A MESSAGE FROM THE PRESIDENT

Fellow Pilots,

Perhaps because of the lives we live, and the nature of our profession, there are probably few groups of people with a stronger sense of comradeship, of fellowship, than pilots.

Last July, I had the difficult task of saying goodbye to our very dear friend, Capt. Mike Watson. Mike was a real friend, who taught me many important things and it is still with disbelief and sadness that I think of his loss.

He was a man of principles and when defending pilotage, for example, he knew he was actually serving something greater than himself; he was working to safeguard the public good. It is now our shared responsibility to continue his work and to remember his fearlessness, and his wit, when being champions of marine safety.

One of the more challenging aspects of my role as IMPA President is staying in touch with the thinking and the preoccupations of pilots around the world who are represented by our Association.

Pilot organizations from some 50 countries are part of the IMPA family, and every single pilot belonging to those organizations has a common concern for safe navigation and efficient marine transportation. That said, the local nature of pilotage means that the circumstances, requirements and problems our members face can be quite different from one location to another. There is no better way to understand these different realities than to meet with pilots in their own region, experiencing firsthand the context in which they work and gaining some familiarity with the maritime stakeholders that are their partners and collaborators.

Since my election as IMPA President in April 2014, I have been able to participate in some 20 pilot events in Asia, Europe, Australia, South America and North America. These events provided me with the opportunity to speak directly with pilot representatives from over 25 countries, and to do so in their own regions.

I find these occasions invaluable and very much worth the time and effort required. These meetings leave me better informed as to the point of view pilots from any given area have, but they also help me understand the reasoning behind the positions taken on specific issues. To represent pilots effectively, it is not enough to be aware of what they think; it is crucial to understand how and why they have come to think what they think. Often, this means gaining an insight into the political dynamics of a country, or the economic imperatives of a region, or even the power struggles between various players in the maritime sector.

Pilots operate in a complex world, and there are a great many variables that can affect our ability to discharge our duties. While some of them may be beyond our ability to control, they are almost always within our capacity to understand. With understanding, comes the possibility of both influencing circumstances important to us and responding more effectively to the situations we encounter.

Time and again, in my meetings with pilots around the world, the underlying complexities and relationships that impact on pilotage become so much clearer to me than if I did not have the benefit of these “on the spot” discussions. Because of this, I have a better understanding and I hope this allows me to advocate for the IMPA membership more effectively.

Simon Pelletier
World-class • De classe mondiale

2005-2015
10 ans/years

Division of/de

For over 150 years, guardians of a great continental waterway

Depuis plus de 150 ans, gardiens d’une grande voie de navigation continentale

CORPORATION OF LOWER ST. LAWRENCE PILOTS

Of all the simulator courses that I have taken during my career, the one taken at the MSRC was the most practical and instructive.

Pilot, Cornwall District, Canada

De tous les cours de simulateurs que j’ai suivis tout au long de ma carrière, celui suivi au CSEM fut le plus pratique et le plus instructif.

Pilote, District de Cornwall, Canada

+1 418.692.0444 • www.cpbsl.ca

+1 418.692.0183 • www.sim-pilot.com
Message from the Secretary General

Dear Colleagues,

I was brought down to earth recently when a member Association President asked for clarification of some words in my last magazine foreword. I had lost “Situational Awareness” when writing it and forgotten about my readers! Indeed, I had committed the cardinal sin of assuming too much. It is a familiar theme of life and indeed almost fatal in our profession to assume all is as we think it is, and to retreat to a cosy unquestioning world. So I am a chastened Secretary General now! It’s actually good to occasionally be brought up by a round turn, but in the office the consequences for me are not as serious as a loss of concentration for you on the bridge of a ship.

Accident investigations now focus very much on the Pilot’s situational awareness, fatigue and relationship to the Bridge Team. It is good that investigators have not fallen into the trap, however, of assuming the Pilot has in some way failed as an individual if there is an accident, and they recognize the need for the Bridge Team to fully support Pilots during the passage.

There is more on this new partnership with Accident Investigators inside this edition. On Page 17 we have also now submitted the results of the Ladder Safety Campaign to IMO, as well as co-sponsoring a paper to IMO with IACS securing that a 9 metre climb means a maximum of 9 metres! The final pro-active measure I can report on is our partnership with PIANC (The World Association for Waterborne Transport Infrastructure) in support of measures to ameliorate climate change. Details of the “Think Climate” campaign are on the IMPA website.

I recently spent some time with the President in Australasia and Asia, meeting members from all over the region, and also viewing the venue for our 2016 Conference. This was a good opportunity to connect with you, so that I do not again lose Situational Awareness!

Seasonal Greetings from the IMPA staff.

Nick Cutmore
Maritime pilotage is the core profession within UK ports and coastal waters ensuring the 24/7/365 safety and efficiency of shipping movements. 95% of UK trade is done by sea transport through UK ports, with UK Maritime Pilots responsible for the conduct of navigation of the majority of vessels within local port areas as per the port’s regulations.

The quick thinking, decisions and actions of the Southampton port pilot on board Hoegh Osaka with the ship’s captain and his bridge team resulted not only in the prevention of a major catastrophic event for the ship but most importantly, saving the lives of the 25 crew members. The decision also ensured the continuing unimpeded operation of one of the UK’s major ports and protected the local marine environment from potential significant pollution had the fuel tanks been inundated.

The pilot having grounded the ship intentionally on the Bramble Bank to prevent further deterioration of the ship’s life threatening list, maintained his role of having conduct of the ship and then played a major part in the coordination of the crew’s rescue by the emergency services. Having stayed on board accompanying the master and a senior ship’s officer after all others had been evacuated, further movement of the ship was detected and the pilot subsequently instructed the remaining three to be evacuated by helicopter.

All this was possible as a result of the extensive high quality training that UK maritime pilots are required to undertake coupled with significant local knowledge and experience gained through years of professional practice. Not only in ship handling but in all the other complex aspects of ship operations directly and indirectly related to manoeuvring, navigation and cargo transport.

"The sound of safety is silence" yet in some quarters of the UK ports industry there is a misconception that because everything is going right then there must be no need to operate pilotage services at such high levels of expertise and training. This conveniently overlooks that it is exactly because of the significant investment in pilotage operations that on a day to day basis UK pilots safely conduct thousands of ship movements without high profile incident, dealing with the complexities as they arrive.

The manner in which the Hoegh Osaka situation as it evolved was handled by her pilot is testament to the rewards that are inevitably reaped from proper investment in the training and operation of port pilotage services and the professionalism and dedication of UK pilots.

Hoegh Osaka - Grounding 3 January 2015

Taken from the United Kingdom Maritime Pilots’ Association (UKMPA) Press Statement.

It was during the night on an outbound small coaster. The vessel was in ballast with a 6 rung pilot ladder and the ladder parted at the top as the pilot stood on the top step to disembark. The ladder had been tested by the pilot vessel deckhand prior to the pilot stepping onto the ladder. Luckily on this occasion the deckhand managed to grab the pilot’s legs and helped to lower him down to the pilot boat safely and without injury.

The port authority warned the next port she was heading to and the vessel’s Master was also informed of what had happened. On arrival at the next port a new ladder was available and the MCA also attended the vessel.

The pilots at her next port have kindly given permission to share the attached picture of the broken ladder. It has failed where it runs over the deck edge as it is shackled to the deck and used at a set length for every time the vessel is in a ballast condition. Obviously the testing, inspection and stowage of the ladder were all inadequate.

Thankfully on this occasion there was no injuries but this was down to a lot of luck as well.

An Incident that Occurred During Ladder Survey Period.

It was during the night on an outbound small coaster. The vessel was in ballast with a 6 rung pilot ladder and the ladder parted at the top as the pilot stood on the top step to disembark. The ladder had been tested by the pilot vessel deckhand prior to the pilot stepping onto the ladder. Luckily on this occasion the deckhand managed to grab the pilot’s legs and helped to lower him down to the pilot boat safely and without injury.

The port authority warned the next port she was heading to and the vessel’s Master was also informed of what had happened. On arrival at the next port a new ladder was available and the MCA also attended the vessel.

The pilots at her next port have kindly given permission to share the attached picture of the broken ladder. It has failed where it runs over the deck edge as it is shackled to the deck and used at a set length for every time the vessel is in a ballast condition. Obviously the testing, inspection and stowage of the ladder were all inadequate.

Thankfully on this occasion there was no injuries but this was down to a lot of luck as well.
Manned Model Training
GET UNDERWAY

Customized Training by Pilots, for Pilots

Get 10% off Winter Classes
(November – February)

MaritimePilotsInstitute.org/courses
985.867.9789 | Covington, Louisiana

Maritime Pilots Institute is located near the warm waters of the Gulf Coast in beautiful Covington, Louisiana.
The first two classes of 2015 have inaugurated the third cycle of the ATPR (Pilots’ Refresher Course) which will be extended to 2019. It is estimated that in the end all qualified and working pilots, except for pilots and pilot apprentices from the 2012 selective process, that is, 450 professionals, will have attended this course. During 2014 the Technical Council members studied and discussed how to reformulate the refresher course, as its name indicates, without losing focus on the recommendations on pilot training, certification and operating procedures contained in the IMO Resolution A.960 (23). At the latest TC meeting last October, decisions were taken and guidelines adopted on how to act from the third cycle on. Last year, CONAPRA invested heavily in sending instructor pilots to the Maritime Institute of Technology and Graduate Studies (MITAGS), Maryland, to upgrade the instructors’ qualifications, mainly with regard to new technologies; to motivate them for instruction practices; and prospect new instructor pilots, since often problems arise for taking classes in their time off. This is why classes 1 and 2 were made up solely of instructor pilots and technical advisors, in order to make the necessary adjustments in the lectures and exercises; and to standardize instructor procedures. Also considered was the importance of exchanging knowhow and experiences; discussion and definition of the speakers’ focus; adjustment on the handling of the first lecture of the course; and instructor procedures in undertaking exercises on the simulators. After training, it was found that this was the right measure, since everyone’s contribution was fundamental in formatting and programming the lectures and objectives of the course, as well as standardizing procedures in running ATPR activities. The main Technical Council guideline for the course in this cycle was to encourage the use of e-navigation equipment and introduce the new pilots to the latest technologies used on the bridges of the ships that visit the Brazilian pilotage zones.

Reformulation of the distance learning part of the course included a new module covering concepts, exercises and videos relating to ECDIS, Radar, DP Azipod and PPU; the complete update of the legislation module with new test questions; alteration to the English module to include the Q&A audio; and also another module of voice recognition and correct English pronunciation, all built into the application developed by iPad. The classroom part of the course was also modified to include the following schedule:

Modified course schedule:

- A lecture on bridge resources management with a practical exercise on maneuver simulation, plus maintenance of the maneuver exercise using ECDIS functions.
- A lecture on environmental impacts of accidents; modeling and drift of oil slicks by remote sensing.
- A talk on challenges of the new versions of the ABNT and Pianc standards for pilotage.
- A lecture and simulations on hydrodynamic effects in ship steering and stopping; banking effect; navigation in fluid mud and shallow water; and astern tide or current, using simulations with a vessel similar to the Triple E container ship.
- Case studies, new operations and operational system in DP, Azio pod and PPU.
- A case study of collision between ships in Port Arthur, Texas, with discussions on aspects considered important in the NTS Breport, which facilitate understanding of the conclusions about the causes of and what contributed to the accident. In addition, a discussion on pilot’s actions that influence the investigation of an accident.
- A case study of a collision of a ship in São Francisco, California, using a simulation exercise of the circumstances of the accident.
- A lecture on conflict management techniques in emotional situations – using a maneuver exercise on the simulator – to be able to recognize what strategies to adopt when dealing with personal and professional conflicts and achieve more mature effective relations among pilotage professionals.
- A simulation exercise of emergency situations, analysis of the chain of errors and risk management. CONAPRA, committed to the control, management and coordination of ATPR, delegated by the Normam-12/DPC standard, continues to strive for excellence in qualifying Brazilian pilots, representing them before the maritime authority and other maritime entities; it is also active in the control and inspection of the pilotage activity, discussing the category’s matters of interest.
Its excellent performance did exactly what the specs quoted it to do.

“This is our third pilot boat from Gladding-Hearn. It will also be deployed offshore for search and rescue. The added length, beam and speed are sure to give us the comfort and safety we’re accustomed to from Gladding-Hearn.”

Capt. Rudy Cann
Department of Marine and Ports Services
Government of Bermuda

If you are looking to build a new boat or upgrade an old one, we can offer complete design and construction, from port security vessels and pilot boats to high-speed ferries.

To learn more call Peter Duttos at 508 676-8596 or visit: www.gladding-hearn.com.

Advanced Shiphandling in Manned Models

Massachusetts Maritime Academy offers a USCG approved Advanced Shiphandling in Manned Models course. This training meets STCW requirements for assessing Management Level Deck Officers.

Additional Training at MMA:

OPA-90 Qualified Individual
Vessel/Company/Facility Security Officer
Visual Communications (Flashing Light)
STCW Basic Training
Medical Care/PIC
Fast Rescue Boat
Radar Observer
ARPA/BRM

Contact us for a complete training schedule
Tel: 508 830 5005 Email: cmt@maritime.edu
www.maritime.edu/cmt
Obituaries

Captain Michael R. Watson
13th February 1943 - 23rd July 2015

President of the American Pilots’ Association and President Emeritus of IMPA, passed away unexpectedly at his home in Annapolis, Maryland on July 23, 2015.

Captain Watson was a maritime pilot and a national and international leader of the piloting profession for more than forty five years. He joined the Association of Maryland Pilots in 1970 and was the president of the group from 1982 to 2000 when he was elected President of the American Pilots’ Association.

In 2002, Captain Watson was elected a Vice President of the International Maritime Pilots’ Association (IMPA), and in 2006 became the first American in more than three decades to be elected IMPA President. He was re-elected as IMPA President in 2010 and completed his second term before stepping down in 2014.

Captain Watson was a strong advocate for the piloting profession throughout the U.S. and around the world. He worked tirelessly to find ways to enhance pilotage requirements and standards, as well as to advance the standing of pilots within the maritime industry.

As the leading figure in pilotage for the past decade and half, Captain Watson worked collaboratively with Congress, as well as with the Coast Guard, NOAA and the Army Corps of Engineers on legislation, policies and initiatives that not only enhanced pilotage, but also increased navigation safety and facilitated the efficient flow of maritime commerce. He also played a key role at the International Maritime Organization (IMO). As APA President, he was routinely a member of the U.S. Delegation to IMO, where he served as an industry advisor to senior U.S. governmental officials. He also led numerous IMPA Delegations to IMO. His efforts at IMO contributed substantially to the improvement of maritime safety, security and environmental protection around the globe.

Captain Watson graduated from the U.S. Merchant Marine Academy at Kings Point in 1965. Upon graduation, he was commissioned as an Ensign in the U.S. Naval Reserve. He began his maritime career by serving on U.S. Military Sealift Command ships supplying U.S. troops in South Vietnam. In addition to his Maryland State Pilot license, he held an Unlimited Tonnage Oceans Master Credential and a Coast Guard First Class Pilot Endorsement for the waters of the Chesapeake Bay and tributaries.

Captain Watson was the recipient of many prominent awards including the U.S. Army Corps of Engineers Commander’s Award for Public Service, Baltimore Port Leader of the Year, Outstanding Professional Achievement Award for the Merchant Marine Academy, Maryland Governor’s Citation, and the U.S. Coast Guard Certificate of Merit.

Captain Watson was born in Washington, DC on February 13, 1943. He is survived by his wife of 45 years, Geraldine, two daughters, Natalie and Alicia Watson, a son-in-law, Charles Walker, and a grandson, Alexander Watson.
Obituaries

Captain John Alfred Edmondson

27th May 1926 - 14th August 2015

Pilots around the United Kingdom mourn the passing of Captain John Edmonson. Born in Morecambe, Lancashire, and went to sea as a Royal Navy Reserve cadet in January 1942 prior to joining New Zealand Shipping Company. His war service included fast escorted runs to the UK from NZ and action in the Pacific (where he was put in charge off an anti-aircraft gun minus a firing pin and told to threaten enemy aircraft by wagging the gun in their direction!).

John gained his Master’s Certificate in December 1953. As a Trinity House Cinque Ports London Pilot he served from 1959 to 1988, having achieved his 1st Class Pilot License in August 1963. He was very much involved in representing his profession, as the Chairman of the London Pilots’ Council in about 1975 and was one of the first IMPA representatives at IMCO, and served as IMPA President from 1978 to 1982.

He is survived by his widow Margaret, a son John, and numerous grandchildren and great grandchildren.

John was a fine and greatly respected representative of all pilots. He had an incredible memory, never forgot a name or face or an event and was a virtual walking encyclopaedia.

Captain John Foley

30th April 1940 - 22nd June 2015

By Captain Wel Gamble, Cruise Ship Co-ordinator and Technical Adviser, Australian Reef Pilots.

Capt. John Foley Australian Reef Pilot passed away on 22nd June morning after a short illness. He was aged 75 and although he retired from piloting just last year he was continuing to conduct lecture tours up till 5 weeks before his death.

John, a noted author of 5 books, and a marine historian, single handedly raised the profile of the Australian Reef Pilots in their relationship with the cruise industry. John worked assiduously to bring cruise ships to his part of the world and put skilled pilots aboard who provide a world renowned service to the cruise ships far beyond pilotage. This, in fact, is an internationally unique service which will this year provide its pilots talents to a record number of cruise ships making passages through the Great Barrier Reef, PNG waters and Kimberley coast.

This is due entirely to the efforts of John Foley who will be sorely missed by colleagues and the industry, but Australian Reef Pilots and their dedicated group of cruise pilots are determined to honour his legacy by continuing to provide and improve on the service to the Australian cruise ship industry.
The U.K. Marine Accident Investigation Branch (MAIB) has released its investigation into the grounding and flooding of the ro-ro ferry Commodore Clipper in July 2014, citing passage planning problems and ineffective use of ECDIS as contributing factors.

The Bahamas registered ro-ro passenger ferry Commodore Clipper grounded on a charted, rocky shoal in the approaches to St Peter Port, Guernsey.

No-one was injured, there was no pollution, but there was significant raking damage including breaches of the hull resulting in flooding of double-bottom void spaces.

The grounding caused a noisy, shuddering vibration that reverberated throughout the ship, but the crew did not check for damage, no external report was made and no safety announcements were made to the passengers.

Once alongside in St Peter Port, cargo discharge, reloading and a lifeboat drill went ahead as planned. However, a pre-planned divers’ inspection of the hull soon discovered damage and the vessel was withdrawn from service.

The investigation found that there had been insufficient passage planning for the voyage. For the transit through the Little Russel, the extremely low tide and effect of squat were not properly considered. This resulted in the bridge team being unaware of the limits of safe water available and thus, despite their good positional awareness, they headed into danger without appreciation of the risk.

Several course alterations intended to regain track were ineffective due to the tidal stream setting the vessel off course. Additionally, the absence of any alarm, steering and propulsion responding normally, and the master’s conviction that there had been sufficient depth of water, led to a collective denial of the possibility that the vessel might have grounded.

The company’s approved route was not followed, and the vessel’s electronic chart display and information system was not used effectively because key safety features were either disabled or ignored. Had all the factors affecting under keel clearance been accurately assessed, it would have been apparent that it was potentially unsafe to pass over any charted depth less than 7.5m in the Little Russel, the report states.

The highly repetitive nature of Commodore Clipper’s schedule induced a degree of planning complacency. Although the primary method of navigating in the Little Russel was visual, ECDIS was not used effectively as a navigation aid. In particular, the safety contour value was inappropriate, the cross track error alarm was ignored and the audible alarm was disabled. The layout of the central bridge console prevented the chief officer from using the ECDIS display to support the master during pilotage.

Additionally, the significant navigational risk routinely being taken by the crew of Commodore Clipper and the ECDIS non-conformity went undetected by audits and inspections.

The following is an intervention made by IFSMA (International Federation of ship Masters Association) to IMO III2 (Implementation of IMO Instruments) meeting. It was meet with silence.

"Thank you Chair. IFSMA on behalf of shipmasters thanks the United Kingdom and participants of the correspondence group for this detailed Paper. IFSMA respectfully draws attention to the most important issue affecting seafarers today, namely, ‘fatigue’ or more precisely tiredness, which affects none more so than shipmasters.

No civilisation in history or mode of transport today provides for only 77/70 hours rest per week. This equates to a 91 or 98 hour working week. Compliant with regulation (STCW 78 as amended), but contrary to all research in any sector of industry including shipping.

Invariably, investigation focuses on proximate cause with the seafarer taking the hit for a regulatory system that fails not only to protect them and treat them fairly but seeks to criminalise them so as facilitate a more favourable financial outcome. There are examples of good practice, where accident investigation is truly independent and criminal sanction is sparingly used. Shipmasters should not have to work in fear of incarceration – professional sanction should replace unwarranted criminalisation. IFSMA requests this statement is recorded in the Report of the Sub-Committee. Thank you Chair."
QPS Qastor

QPS Qastor is Electronic Chart Software (ECS) that enables navigation, piloting and precise docking, as well as several other application such as Oil & Gas FPSO/SPM mooring, patrol vessel and tugboat operations. First introduced in 2000, Qastor has continued to be developed and enhanced, and now includes an wealth of options and features specifically the result of extensive use in canals, ports and riverways around the World. Using wired or wireless methods, Qastor interfaces to most devices outputting NMEA data strings, to AIS units.

Fleet Tracking and Route Management

It’s not just mariners on vessels using QPS Qastor, a number of harbour masters and most recently fleet operation managers use QPS Qastor and the QPS Connect Server and Client for round the clock monitoring and alerting. QPS Qastor Connect Server also supplies meteorological data, VTS targets and ENC updates to QPS Qastor users.

QPS DELIVERS PRODUCTS TO ACQUIRE, PROCESS, VISUALIZE, SHARE

The solutions for your maritime geomatics data and maritime projects
Contact: sales@qps.nl or sales@qps-us.com
www.qps.nl or www.qps-us.com
In 2013 the Marine Accident Investigators’ International Forum (MAIIF) discussed the Master/Pilot relationship in the context of the work at IMO’s III Sub-Committee on Accident Investigation.

MAIIF invited IMPA President Simon Pelletier to their conference in Panama in 2014 where he robustly explained Pilots’ problems, including the paucity of support from rested, competent Bridge Teams. This led to the idea that both bodies should join in stressing the need for Bridge Teams to support and communicate during passages under pilotage. It was felt that a graphic rather than text might have more impact so IMPA prepared the poster seen here. (You will note the similar style to the Pilot Boarding Arrangements poster!). To try to give the poster and its accompanying text some initial speed it will be formally launched at IMO’s HTW meeting in February 2016.

This is one of a number of joint initiatives that IMPA are engaged in at present which include projects with PIANC and IACS.

The poster will be downloadable from the IMPA website in the New Year.

IMPA on the move?

The IMPA Office may be moving! There is no need to worry though, as the ‘Wellington’ is likely to be only moving about 40 metres downstream next Spring.

A new pedestrian bridge may be built across the Thames and one of its supports will be adjacent to our current forward anchors. The ship may move east to new monotube piles with a new pontoon, allowing better access. Temple Underground Station will be shut while the bridge is built.

*Wellington lies in Compulsory Pilotage waters and would be moved with pilots aboard (with the con!).
Australia’s Maritime Safety Authority (AMSA) has questioned whether port scheme control (PSC) is succeeding in delivering quality shipping.

In a report detailing the results of Australian inspections during 2014, AMSA said trends over the past 10 years appear ‘disappointing’ - with deficiency and detention rates having stabilised in the second half of the decade.

‘While there have been modest improvements experienced across a number of areas, the overall picture indicates that the international community’s PSC / FSC (flag state control) efforts are not delivering lasting results,’ it warned.

AMSA said it was difficult to reconcile how the most common reasons for detention continue to be related to ISM (31.2%), fire safety (14%), life-saving appliances (11.4%) and pollution prevention (10.4%) when there are well-established requirements in place. ‘The relatively high proportion of detainable deficiencies attributable to the ISM category continues to remain a major cause of concern as it indicates that the management of ships is not as effective as desired,’ it added.

Its report also reveals a 15.5% increase in ship detentions in Australia last year. The number of deficiencies discovered during PSC inspections rose by more than 30% even though the number of ship arrivals increased by just 4.6%.

AMSA said the increased focus on ‘human factors’ is part of the reason for the increase in detentions - with deficiencies related to the Maritime Labour Convention (MLC) accounting for just over 15% of the total.

It dealt with 114 MLC complaints - 25% of which were linked to wages, 20% to food and catering, and 10% to seafarers’ employment agreements.

‘During 2014, AMSA surveyors observed a general improvement in seafarers’ knowledge and application of MLC,’ the report notes. ‘Allied to this has been a noticeable increase in the number of “onshore” complaints to be registered, wherein seafarers can raise concerns external to shipboard mechanisms.’
23rd International Maritime Pilots’ Association Congress

September 26 (Mon) ~ 30 (Fri), 2016
Sheraton Grande Walkerhill & W Hotel
Seoul, Korea

Welcome Message from Korea

It is my great pleasure to invite you to the 23rd IMPA Congress from 26-30 September 2016 in Seoul, Korea. The Korea Maritime Pilots’ Association is delighted to have the opportunity to host the congress.

The host city of Seoul is the capital of Korea with over 600 years of history. It is the heart of Korea’s culture and education as well as politics and economy.

I am excited to welcome you all to Seoul and preparing a program that will give you pleasant time and memories sharing with the pilots from all over the world.

Please set aside the time in your busy calendar to join us for this wonderful event. Online registration will start from February 2016 through the congress website at www.impa2016.com

I appreciate your interest and support for the congress, and look forward to seeing you all in Seoul.

Captain Na, Jong Pal
Chairman, Organizing Committee of IMPA 2016

Captain Choi, Yeong Sig
Vice-Chairman, Organizing Committee of IMPA 2016
Registration Information

- Registration will start from February 2016 through the congress website (www.impa2016.com)

- Fee Structure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Delegate</td>
<td>USD 1,620</td>
<td>USD 1,800</td>
<td>USD 1,980</td>
</tr>
<tr>
<td>Accompanying person</td>
<td>USD 1,210</td>
<td>USD 1,350</td>
<td>USD 1,480</td>
</tr>
</tbody>
</table>

About Seoul, Korea

Seoul is a city that embraces the beauty of both tradition and modernity. With five ancient palaces and five World Heritage Sites designated by UNESCO, the city is living history of 600 years as the capital of the CHO-SUN Dynasty. The Hangang (Han River), which runs through the center of the city, is also a distinctive landscape of Seoul that offers a myriad of resting areas for citizens.

Seoul has numerous shopping malls, department stores, duty free shops, and traditional markets, making shopping available all day long. GANG-NAM area offers world famous brands and designer shops; IN-SA-DONG area sells traditional handmade crafts and affordable products; and DONG-DAE-MUN area is among the most popular shopping spots in the city. Also, the city offers a variety of cultural entertainment such as performances, movies, plays, and musicals that run until late in the evening. You can experience how people resided in the past at HAN-OK villages (Traditional Korean Houses), learn to make KIM-CHI, MAK-GEOL-LI (Korean Rice Wine) and traditional handicrafts, learn TAE-KWON-DO, and try a temple stay.

About Sheraton Grande Walkerhill Hotel & W Hotel

Located in the Northeast region of Seoul with a panoramic view of the Hangang and nestled amidst the beautiful and serene natural elements of the Acha Mountain, the Walkerhill offers nothing but satisfaction with its five-star service and value. Walkerhill features 2 luxury hotels the Sheraton Grande and W Seoul, with a combined total of 830 guest rooms, 15 restaurant and bars, and extensive conference centers and wedding halls.

Congress Coordinator

c/o The Plan Co.
Ms. Juhyun Julia Yi (CMP)
E. info@impa2016.com T. +82-2-538-2042~3 F. +82-2-538-1540

www.impa2016.com
The Most Accurate Portable Pilot Unit

EXTREME RELIABILITY - SAFE, ACCURATE, EFFICIENT

ADX XR

- Totally Wireless PPU system, operational within a few minutes
- Independent of any ship equipment
- Seamlessly tracking GPS+GLONASS (17-20 satellites in view)
- 1-2 cm Positioning of Bow and Stern
- 0.02 kn speed control of Bow and Stern

Since 2005, AD Navigation has been supplying PPU systems to demanding pilots worldwide. The new State-of-the-art ADX XR technology is the perfect PPU tool for the pilot that wants to be 100% independent of the ship instruments and crew. Unmatched performance makes ideal for applications such as:

Maneuvering in confined waters - Docking - Lock/Dock approach - Rig Move - Ship to Ship Docking

www.adnav.com
AD Navigation AS
Reservatveien 8, N-3118 Tønsberg, Norway
Tel: +47 69 25 33 00 info@adnav.com
Inspectors warn on crews’ work hours

This article first appeared in Nautilus Magazine and appears with their kind permission.

Concern raised as checks reveal ‘worrying’ non-compliance with STCW rules.

Nautilus has backed calls from port state control (PSC) authorities for more concerted action to enforce seafarers’ hours of work and rest rules.

The calls came as the results of a coordinated three-month concentrated inspection campaign conducted in key areas of the world last year were presented to the International Maritime Organisation last month.

During the special checks on compliance with STCW requirements, a total of 72 ships had to be detained in the Paris, Black Sea and Indian Ocean PSC MOU regions. Between 14% to 28.6% of ships were found with one or more work hour-related deficiencies.

Reports submitted to the IMO’s implementation sub-committee by the PSC authorities expressed concern that so many problems were identified when the concentrated inspection campaign had been highlighted many months in advance.

Particular concerns were also raised about the significant number of ships operating a two-watch system with the master as a watchkeeper, and about the numerous cases where no bridge lookouts were being maintained.

The most common deficiencies found during the inspections included incorrect recording of hours of rest, lack of daily rest records for individual watchkeepers, insufficient rest for watchkeeping personnel and failure to post watch schedules in an accessible area.

Concerns were also raised about the disproportionate numbers of problems found on ships over 25 years old, as well as the level on non-compliance with minimum safe manning documents.

The reports recommend that PSC inspectors continue to ‘emphasise the vital requirements’ of the STCW rest hour rules when checking ships.

Nautilus senior national secretary Allan Graveson welcomed the reports and, speaking on behalf of the International Federation of Ship Masters’ Associations, he told the committee that seafarers are often not given the resources, in accordance with the ISM Code, in order to comply with the STCW rules.

Mr Graveson said the PSC reports provided some worrying findings - especially in light of the Project Horizon research into the impact of excessive hours on the performance and alertness of seafarers. ‘It should also be noted that these inspections related to the STCW requirements, rather than those set by the Maritime Labour Convention,’ he added.

Port state control authorities have produced proposals to target substandard flag states and classification societies. The IMO’s implementation sub-committee was presented with the findings of criteria identifying eight poorly performing class societies, with a recommendation that the information is used to advise flag states when authorising recognised organisations to act on their behalf.

IMPA releases Safety Campaign 2015 report

By Captain John Pearn, IMPA Vice President.

Thank you very much to all the pilots that participated in the 2015 Pilot Ladder Safety Survey. Particular thanks are owed to French and Slovenian pilots for their enthusiastic participation in the survey.

It is a cause for concern that the results of the 2015 survey remain in line with earlier surveys and show no improvement on previous results. It is notable to report that still one in five pilot boarding arrangements are non compliant, with potentially detrimental consequences for pilots. It is also disturbing to note that there remains a low percentage of non-compliant vessels being reported to the authorities. The authorities are restricted in their ability to enforce SOLAS Regulations if they are not informed of any deficiencies.

It has been proposed that in future years IMPA will undertake an annual pilot ladder safety survey which would allow IMPA to collate information on an ongoing basis, allowing them to monitor trends within the industry.
As long ago as 1995, Australian company Serpent and Dove – Applied Magnetics, pioneered the use of magnetic devices for securing pilot ladders and also floating spill booms to ship hulls. The early models took advantage of the then emerging commercial availability of the so-called ‘rare earth’ suite of magnet materials and particularly those of the neodymium/iron/boron composites. These offered the possibility, when properly used with appropriate soft iron magnetic pole concentrators, of higher magnetic gripping power than previously possible. Early models used a heavy steel plate as the main support member for three cup-type magnet elements. An over-centre lever/handle enable removal of the magnet with minimal force.

In recent years the company’s Pilot ladder Magnets have become known as Yellow Mag because of their distinctive safety yellow colour and improvements have been patented. These patented improvements (Yellow Mag II) have made the device much lighter in weight and also able to accommodate irregularities in a ship’s hull such as corrosion, weld seams, paint build-up and hull curvature. Yellow Mag II testing has been Lloyd’s witnessed and given a factual statement for a breakaway of 450 kgs per unit. Because the magnets must be handled carefully correct deployment is important. Figure 1 shows the Yellow Mag II and Figure 2 illustrates how it should be deployed to ensure safety. The procedure begins with the handle and white breakaway roller in the position shown whilst the magnet is positioned on the hull before lowering the handle to the ‘on’ position. There should be one Yellow Mag each side of the ladder.

Whilst Yellow Mag II still provides great service and secure clamping, the advent of switchable permanent magnet devices has also made a second patented option available. The Sea-Mag II (Figure 3) provides up to 690 kgs breakaway and can be conveniently switched on and off manually (note: no electric power is required). Whilst being heavier at about 8 kgs, the Sea-Mag II is deployed by first attaching its safety lanyard’s carabiner to the ladder rope for security (as seen in Figure 3) and then placing the magnets against the hull with the yoke across the vertical rope. The magnets can then be activated by depressing and rotating clockwise the ‘T’ shaped switch on top of each magnet. Again, there should be one Sea-Mag II each side of the ladder.

Editor’s note: We thought this might be informative in the light of reports of magnets being adapted to use one instead of two!!

Figure 1.

Figure 2.

Figure 3.
THE PILOT’S NO.1 CHOICE THROUGHOUT THE WORLD

The COAT that becomes a 170N LIFEJACKET in less than 5 seconds!

seasafe®
SYSTEMS

50 YEARS Saving Lives

Design your Coat to your specification using our ‘BUILD-A-COAT’ tab found on SEASAFE.CO.UK
Riders On The Storm – Decks & Seats On Fast Boats

A shock mitigation strategy is essential for all craft that undertake open sea transits or operate in rough water. The definition of shock mitigation is, ‘to make a violent collision or impact less intense.’ The search for shock mitigation has created a range of solutions.

In the 1980s criminal organisations capable of buying fast boats were most likely running something, or someone, illegal from offshore. As boats were purchased and money changed hands the simple questions ‘what payload’ and ‘how fast’ were being asked from the Mediterranean to the Caribbean.

These organisations soon owned the fastest boats on the water. Seating was irrelevant and crews were usually standing on hard decks as any wasted space or weight reduced the all important payload. As the distance from Morocco to Spain and Bimini to Miami is around 50 miles, identifying a boat capable of over 50 knots was an important criteria.

In the early days of counter ‘go fast’ operations for marine police, customs and borders organisations the focus was firmly placed on procuring high performance hulls to chase down offenders. Boat crews and enforcement officers were usually standing in wrap around bolsters or leaning against padded rails. There were no seats and these hard core operators were using their experience, balance and leg muscles to ride the boat.

Go Fast Operations

Countering a high value, high speed run in from the Bahamas or the Caribbean required a capable fast response boat with fit crews ready for a short sharp pursuit, usually at night, that often ended in a ‘lights off’ high speed chase in the inter coastal waterways. This was a brief one on one, win or lose, situation with lucrative pay off for a single evasion. The speeds achieved by ‘cigarette boats’ on weekend offshore powerboat races and poker runs in Southern Florida suddenly became significant!

The history of ‘shock mitigation’ technology can be traced back to the 1990’s and the rapidly changing requirements of counter narcotics and military marine operations as boats became faster with extended and more complex missions. However the game changer for homeland security in port and maritime security operations was 9/11. As the global stakes changed and requirements were analysed it became obvious that security and military boats would need to operate faster than ever before. The people on them would need to be ‘fit to fight’ determined adversaries after a fast transit in extreme sea conditions.

As high speed craft designers and professional sector boat builders rose to the challenge they built in ‘over engineering’ wherever possible. In the early days of shock mitigation ‘feet off the deck’ suspension seating incorporated complex engineered solutions, often adapted from land vehicles. Other manufacturers then started to offer lighter and simpler ‘feet on the deck’ jockey suspension seats.

Next generation manufacturers have created a range of suspension seats and adjustable shock mitigation systems to enable humans to operate fast craft in the roughest of conditions. These solutions utilise sophisticated mechanical engineering to disconnect the boat occupant from G forces as the hull moves over rough water and wave conditions. Taking this a stage further, the latest shock mitigation technologies now utilise Man Machine Interface (MMI) to link coxswains, navigators, engineers, FLIR operators, gunners and commanders to their tasks, controls and screens.

With all this high technology there is an opportunity to step back and define what and where are the forces that we are really trying to reduce on the water. As ever at sea - simple is good!

Shock Mitigation By All Means

Shock mitigation is important for people who want to go further, faster or for longer in extreme conditions. RHIBs are an outstanding way to get afloat but as technology changes even a very fit human body has its limits. One of the things that marine professionals have in common is a growing awareness of injury. As crews need to focus on the task at hand it is important to protect all occupants of fast boats from injury, whether they are sitting or standing.

When a RHIB is running in flat conditions occupants experience vibration coming up through their feet on the deck, held there by gravity and body mass. There is no doubt that light agile people have an advantage, but try telling that to a big military operator in heavy body armour.
Since 1967, we had over 6,500 masters and pilots, mainly from USA, Canada, Australia, Brazil and Europe. Many of them now coming for the second time (and more) in their career.

Training on manned models

AIMING FOR the best

- Our highly motivated instructors: former maritime pilots
- Our fleet of eleven 1:25 model ships representing 20 different vessels of 40,000 to 400,000 dwt
- Our 4 tractor tugs with Voith Schneider, Z-peller and Carrousel
- Our 5-hectare lake with wave, wind and current generators, little interference from wind, and a variety of berths, an SPM, a canal, channels and extensive shallow water areas enabling all types of manoeuvres
- Our DGPS ship tracking system for manoeuvre debriefings

Check our web site...

www.portrevel.com

PORT REVEL SHIPHANDLING
3500, route de Revel
38870 Saint Pierre de Bressieux
FRANCE
Tel: +33 (0) 474 20 02 40
Fax: +33 (0) 474 20 12 29
port.revel@arteliagroup.com

www.arteliagroup.com
In flat sea conditions there is vibration from the engine but boat occupants are not exposed to harm. All fast boat operators know that waves change everything! Waves can be wind blown and build up in a few minutes or can be caused by the wake from larger vessels even in calm weather conditions.

As powerboats get lighter and faster there are new issues to consider. Operating a fast boat in flat open waters is relatively easy. But operators running powerboats at high speed need to understand the forces they are dealing with. What is vibration and impact doing to novice crews and less experienced passengers when the boat hits a wave?

Professional high speed craft operators need a combination of shock mitigation solutions. But there is no ‘silver bullet’, shock mitigation is about reducing forces and potential injury by a few percent wherever possible via the hull, seats and deck.

Whole Body Vibration & Repetitive Shock

Whole Body Vibration (WBV) exposure on planing craft is usually caused by continuous ‘hammering’ from short steep seas or wind against tide conditions. Repetitive Shock (RS) on planing craft is usually caused by random ‘hits’ from head sea impacts, crossing seas or overtaking following seas.

At commercial boat shows around the world it would appear that the fast craft sector has adopted suspension seats as the only shock mitigation solution. In reality the new hi tech craft at shows only represent a tip of the iceberg. The majority of in-service craft belong to hard working organisations with budget constraints and limited space on deck, or are close to their payload for lifting by dockside crane or onboard davit.

The EC Vibration Directive came into force in 2010 and there is now an increasing awareness that professional operators need to reduce the effects of vibration on their employees by all means. Fast boat drivers know that even moderate sea conditions can be painful and may lead to serious injuries to ankles, knees, lower back and neck. What they often do not realise is that a fast boat in 1 metre (3 feet) seas can measure impacts of up to 10g on the deck.

Sitting & Standing On Fast Boats

Research in the past decade has led to a better understanding of the forces involved on the human body at sea. Professional organisations are now asking what they can do to reduce the effects of vibration and potential injury as the effects of fast boat transits take their toll on the fitness and long-term health of personnel.

On jockey or straddle style suspension seats the occupants feet are still on the deck. In a head sea or following sea transit, some of the forces are vertical (usually referred to as Z axis) and some of the forces are fore and aft (usually referred to as X axis). The boat rarely moves sideways (usually referred to as Y axis) but side-on seas cause random events and a combination of forces that cannot be predicted and create the most damaging vector of forces on the human body.

On certain craft there is the option to retrofit suspension seating. But if seats are too large to fit, or are simply too costly, then operators will need to find other methods to reduce the effects of vibration and impact on the human body. With boats now expected to last 15 to 20 years many military, police, government and commercial organisations will not retrofit suspension seats and crews will simply have to continue to stand in anything other than calm conditions. Military and professional operators around the world are now looking at the deck and considering how to reduce the forces there.

High G Forces for Occupants

The big force that all crews are aware of in a RHIB is when the boat climbs over the top of a wave and occupants experience a negative gravity sensation, just like the hump on a roller coaster. As the boat lands the Vee of the hull displaces water then due to buoyancy it can go no deeper. A few milliseconds later occupants land on the deck and their body decelerates with everything from the head down pushing into the feet if standing, or into the backside if sitting. Visit any physical therapist and they will show you the weak points of the human skeleton. Ask a group of fast craft professionals where it hurts and you will usually get the same answer - lower back, knees and hips.

On boats without suspension seats experienced operators usually chose to drive RHIBs standing up in anything but flat conditions. As the seas get bigger most fast boat operators prefer to stand to see oncoming waves and use their legs to balance and absorb the boats movement. At that point they also have the opportunity to engage and use an incredibly complex suspension system - the human body.

To enhance the standing position crews need to consider what they are standing on. Typical decks made of aluminium, fibreglass and composite materials transmit shocks and vibration. Standing on foam or rubber flooring is an option, but most of these materials lack stability which causes fatigue. This is where the constant ‘firing’ of ankle and calf muscles eventually leads to shaking legs. When simply standing on most foam products the material is already pre-loaded, which means the feet sink towards the deck, therefore reducing the depth of cushioning. For heavier occupants in wave conditions it becomes increasingly likely to bottom out which feels like the underside of the feet have been hit with a hammer.

Impact Mitigating Boat Decking

The shock transfer to crews and passengers standing on non-cushioned deck surfaces is significant when operating at speed, even in moderate sea states. Just as suspension seats are more engineered than standard foam seats, impact mitigating boat decking solutions need to be more engineered than simple rubber or foam. Skydex Technologies have developed high-performance boat decking products that use patented energy-absorbing geometries to reduce the effects of impacts and dampen vibration on RHIBs and high speed craft. The objective is to reduce the potential for injury to personnel, and protect equipment carried on deck, when exposed to wave slam events in fast craft operations.
James Taylor, President & CEO of Skydex Technologies, said, ‘Skydex has developed products that excel in harsh environments and our technology has been employed extensively around the world. The technology that we bring to the marine market is the same that we have supplied as blast mitigation flooring to protect the occupants in over 20,000 military vehicles.’

Skydex Boat Deck is available in a range of products, from 14mm to 50mm thickness, based on the level of deck coverage and mitigation required. This can be fitted on new boats or as a retro-fit solution to reduce the effects of shock and vibration for any craft. The technology works by utilizing elastomers and proprietary geometries to create a multiphase spring that is engineered to react differently to various levels of impact.

Peter Foley, Chief Technology Officer of Skydex Technologies, said, ‘Skydex works differently than foam and is tuned to react to the expected levels of shock. For example in a wave impact situation, particularly in the dark, the human body cannot react fast enough to protect itself from the shock. Skydex reacts instantly to the forces, plus the technology works in all axes to reduce the effect on the human body whether the boat is landing vertically, into head seas or even side on.’

Impact mitigating decking can be particularly beneficial on boats with leaning posts and on boats with fixed jockey or straddle seats where the occupants stand in rough conditions. Even ‘feet on the deck’ suspension seats require the occupant to use their leg muscles and carry a percentage of body weight on the deck, this can result in a significant weight on one leg particularly in crossing or side on seas. A holistic approach to shock mitigation solutions on the water can improve comfort and reduce the effects of shock and vibration on the human body for crew and passengers. This can minimise downtime from injuries and extend the working life of maritime professionals.

About the author, John Haynes
John Haynes is an Associate Fellow of the Nautical Institute, a Commercial Yachtmaster Ocean and Advanced Powerboat Instructor. Subject matter expertise includes high speed craft consultancy, product development and specialist training. He is Operations Director of Shock Mitigation, providing WBV Awareness training www.shockmitigation.com and founder of the RIB & High Speed Craft Directory that brings together specialist boats and equipment for the sub IMO / sub 24 metre professional sector worldwide www.ribandhsc.com
Rope Access

Even in our increasingly high-tech world, ‘old fashioned’ rope access, with its obvious health & safety risks, is often the only way to carry out certain tasks – in shipyards and offshore yards, working on offshore rigs, repairing vessels at sea or at anchorage or carrying out inspection, hull coating and other work.

Modern technology, safety & risk training and awareness, strict adherence to rules and regulations, and the right equipment can all reduce the dangers, but the safety bulletins issued by the International Industrial Rope Access Trade Association (IRATA) give a good idea of how easily something can go wrong. In February (2015), a rope access supervisor working on board a vessel in a shipyard fortunately escaped injury when he fell through an opening in a walkway grating and into the water from a height of 14 metres – an accident caused by lack of concentration and a split second when the man, a very experienced rope access technician, was unsecured. Investigations concluded that the root cause was human error; the technician had unhooks his safety line unnecessarily to change position, a walkway grating had been removed without proper planning, protection or notice, the worksite was potentially congested and not planned in an agreed sequence and communication was inadequate, said the report.

The risks associated with rope work can only be multiplied when considering the pilot's ladder. The dangers faced by pilots boarding and disembarking huge ships out at sea might seem one step removed from the 'mainstream' considerations of shipowning, ship operating and ship repair, but most certainly that is not the case.

Time is money; shipowners and operators are under pressure to keep vessels operating and, as a result, classification societies, flag states and other authorities are increasingly carrying out inspections and surveys while the ship is at anchor or under way. Hence the pilots' access route, with the risk of poorly designed, maintained or rigged rope ladders, is also faced by surveyors and others.

Aberdeen-based passenger/crew transfer service provider McLachlan Marine Services offers specific training courses for personnel expected to transfer to and from vessels at sea – that could include actual ships' crew, marine systems engineers, government representatives and emergency services, as well as pilots.

“Many instances, ship transfer personnel are not professional mariners and therefore have little or no experience of being at sea and the associated hazards,” says the company. “During a passenger transfer at sea operation, personnel may be expected to board a large, high-sided vessel using a free-hanging ladder and climb to considerable height, unsupported, whilst the vessel is underway. This may take place in the hours of darkness, in poor weather, rough sea conditions and low sea temperatures. This is a daunting prospect for anyone, particularly if not appropriately trained.”

But what if the ladder you are expected to climb is itself unsafe? The quality, safety and use of pilots’ ladders has been high on the safety agenda in recent years, with new regulations from the IMO in 2012 and other new guidelines and regulations currently under consideration.

Giuseppe Raffa is one of 19 pilots in the Corporazione dei Piloti dello Stretto di Messina, providing pilotage services for ships in excess of 16,000 grt transiting the Messina Strait and/or calling at the ports of Messina and Gioia Tauro. He regularly Tweets pictures of the unsafe ladders he encounters. “As a pilot myself, I cannot close my eyes – and for professional ethical reasons too,” he says. “I shoot pictures as I come across the situations, in order to publicise the issue of continuing irregularities in arranging pilot boarding according to the IMO’s new rules.”

Among the most common dangers he encounters are the pilot ladder and /or accommodation ladder not connected to the ship’s side and allowed to hang freely away from the ship’s side; the platform too low and close to the pilot launch deck; the accommodation gangway too steep and in poor condition; and improper securing of the pilot ladder to the deck – “but you can realise this issue only when you are on deck”.

"Another important issue is the presence of sponsons or rubbing bands on the ship’s hull that do not allow the safe drawing alongside of the pilot boat or the steps of the pilot ladder to rest firmly against the ship’s side."

As he points out, this is probably the only ‘work at height’ done without a safety belt or fall arrest device, as other similar shore work procedures or rules would require – simply because it is not possible to use them.

Don Cockrill, chairman of the UK Marine Pilots Association, also acts as an independent maritime synerget offering various services to the maritime industries. He says classification societies and other authorities are taking an increasing interest in pilot ladders, especially as they have an impact on the safety of their own surveyors. “They are doing more and more work which involves boarding and leaving at sea. Historically that work would have been done alongside but, because of the nature of trade, they have to do class surveys at anchor or even under way, so their surveyors have to use the pilot ladders.”

At the beginning of 2014, Lloyd’s Register issued a guidance note, based on UKM PA and IMO discussions, warning that a particular method of securing a pilot ladder – using simple step hook devices such as the ‘deck tongue’ or ‘hooks’, did not comply with the requirements of SOLAS Chapter V amendments. “They deemed this particular method to be completely out of class and unacceptable,” says Mr Cockrill.

Last year (2014) was unusual in being the first for many years where there were no known fatalities amongst pilots boarding or departing a ship at sea. “More usually in the recent past we have heard of half a dozen a year,” says Mr Cockrill. “Certainly, where pilots are concerned,
it is the most hazardous part of the whole operation – getting on and off the ships.” Some of the stories of dangerous ladders are hard to believe – not least that until the IMO revisions in 2012, the subject fell between the lines in terms of inspections. A few decades back, the pilot ladder was classified as part of the shipboard safety equipment, to be inspected by a safety surveyor in periodic checks of lifeboats, life rafts and other kit. However, changes in the regulations led to a situation where pilot ladders were not actually part of any authority’s safety inspection regime.

“One of the really important changes in the IMO resolution 1045 is that rope ladders are now formally back on the surveyor’s checklist,” says Mr Cockrill. “The construction and rigging of ladders is now covered under SOLAS and checking of the maintenance and construction comes down to the flag state.” However, the technical equipment standards for the actual materials used in the pilot’s ladder are covered under ISO 799, currently under revision. Pilot ladders are now required to be certificated and plated with a certificate number. “So they are quite well covered – in theory,” says Mr Cockrill. “However, in practice it still comes down to, on a daily basis, the pilot looking at the ladder and its condition and determining whether he can see any obvious risks that might cause him not to want to use it. For example, there is a requirement that the fifth rung from the bottom has to be a spreader fitted into the ladder, to stop twisting. If it is not there, that immediately tells you there is something wrong.”

Actual rigging and supervision of the ladder is a different matter entirely, because the obligation is on the ship itself – in other words, the pilot has to put his trust in the crew.

“Rigging used to be supervised by a ship’s officer but there are continuing issues in which the ladder is not rigged in compliance with the regulations – I would suggest that is mainly due to manpower issues on ships and lack of experience. For example, there is a maximum length that a pilot is required to climb. And there are various ways the ladders are secured – something you won’t know about until you get to the top.” And materials are another concern – as in a notorious fatality which involved a brand new ladder. A French pilot was halfway up the ladder when it fell to pieces and he fell to his death. “The ladder suffered microbial degradation of the rope internally,” says Mr Cockrill. “So appearance isn’t everything – the structural rules were there but the materials used failed.” Of the ISO standard review, he says: “New materials are being used but in very haphazard ways. Some are quite sound but don’t comply, while others are downright strange and obviously designed by someone who has never had to climb a rope ladder in a gale in the middle of the night.”

Pilot ladders - what could be improved?

Pilot Giuseppe Raffa says the 2012 IMO regulations on pilot ladders have helped to improve safety, but still the rules are being broken.

“My personal opinion is that the rules on the matter are almost OK,” he says. “It is the crew that need to be trained about the rules and the risks associated in the pilot boarding and disembarking operation. The crew must be trained to rig a pilot ladder and a combination ladder in a proper way.”

Such training is not part of the production and business activities of the ship, he says. “It is necessary that officers receive adequate training on these operations and the regulations, and they should then train the crew on how to do the job.

“The flag state has to check the ability of the crew, as well as the devices and materials. In this way it can check if the boarding arrangements, once rigged, are fully compliant. The pilot’s life is still in the hands of the ship’s crew.”
Simon Pelletier and Nick Cutmore meet with Mr Ki-tack Lim, IMO Secretary General Elect in Seoul in September.
Navicom Dynamics
Market Leaders in Portable Pilot Units

Whatever the outlook, whatever the conditions, whatever your position, we have the solution for you.

Experience superior navigation based on the extremely accurate positioning, heading and ROT data available from HarbourPilot. HarbourPilot provides marine pilots with the ultimate in reliable, accurate, independent data, greatly improving pilot awareness as well as port safety and efficiency.

ChannelPilot is an outstanding aid to narrow channel navigation, offering a combination of independent GPS positioning and highly accurate rate-of-turn with semi-independent heading data. ChannelPilot is very lightweight, rugged and easy to use. ChannelPilot can also support docking manoeuvres where appropriate.

Navicom Dynamics is proud to introduce our newest product GyroPilot - offering smoothed heading and ROT data, combined with all the normal data from the ship’s AIS pilot plug, all wirelessly transmitted to the pilot’s display. GyroPilot fits in the palm of your hand, is very lightweight and easy to set up.

“This is one more way to ensure greater security, so that we can make a manoeuvre in conditions and in confined spaces such as we have in the Port of Santos”

- Bruno Roquete Tavares

Navicom Dynamics
Reliable, Safe, Precise and Efficient Every Time

Phone +64 9 915 5330
info@navicomdynamics.com

www.navicomdynamics.com
SAFEHAVEN MARINE

The Pilot Boat Specialists

- All Weather Pilot Boats
- Self Righting S.A.R. Vessels
- Patrol Vessels
- Crew Transfer Vessels
- Hydrographic Survey Catamarans

Ports supplied with our Interceptor Pilots
1/ Gleann Mor, Cork, Ireland
2/ Camac, Dublin, Ireland
3/ Culverwell, Portland UK
4/ Lifeys, Dublin, Ireland
5/ La Chevauchée, St Malo, France
6/ Echo 1, Malta
7/ Almendra Azul, Sines, Portugal
8/ Rodwell, Portland UK
9/ Spitfire, Southampton, UK
10/ Izuzia, Bayonne, France
11/ Pathfinder, Southampton, UK
12/ Cabo Mondego, Figueria, Portugal
13/ Espinheiro, Aveiro, Portugal
14/ Quinoa, Bordeaux, France
15/ Interceptor, Venice, Italy
16/ Ursula, Roenne, Denmark
17/ Skua, Liverpool, UK
18/ Joa Vaz de Carvalho, Horta, Azores
19/ Fontes, Malta
20/ Valvaro de Ornelas, Horta, Azores
21/ Faial, Horta, Azores
23/ Khaled Abd, Port of Aden, Yemen
24/ João de Teixeira, Azores
25/ Jose Van Hunte, Azores
26/ Turimato, Liverpool, UK
27/ P&O Maritime, Mozambique
28/ Svitzer, Port of Sohar, Oman
29/ Chittagong, Bangladesh
30/ Setubal, Portugal

Contact: SAFEHAVEN MARINE, Ashgrove, Cobh, Co Cork, Ireland. Phone 00353 86 8054582 E mail: info@safehavenmarine.com