A MESSAGE FROM THE PRESIDENT

Fellow Pilots,

As I meet with IMPA members around the world, I am often asked about the much-publicized efforts to develop and introduce so-called “autonomous ships.” The IMPA leadership has devoted considerable time and resources to following this subject and participating in debates about it. Pilots, and indeed most other people knowledgeable about ship operations, recognize that much of the expressed enthusiasm is unrealistic and generated by technology vendors and coastal government administrations rather than the ship operating community.

Despite the claims that we hear and read about, there will not be unmanned, remotely navigated, or fully autonomous ocean-going vessels arriving in pilotage waters in the foreseeable future. Autonomous operations may be introduced in the relatively near term in certain inland waters with small single-purpose vessels. But operating large commercial vessels across the oceans and into ports without any control by onboard humans will continue to face insurmountable technological, economic, and safety constraints for many, many years.

We must, however, resist the urge to be dismissive about the autonomous ship movement. While many of its projections may be unrealistic, there is a development ongoing right now that may pose a serious near-term risk to pilotage and global ship operations. This development may have consequences that extend beyond autonomous ships.

At its May 16-25 meeting, the IMO’s Maritime Safety Committee (MSC) kicked off its “regulatory scoping exercise for the use of Maritime Autonomous Surface Ships (MASS).” The objective of this exercise is to identify provisions in IMO instruments (such as SOLAS, STCW, and COLREGS) that might preclude or restrict MASS operations. This is expected to be a two-year effort. At this time, it is intended to be limited to identifying IMO regulations that may pose a problem for MASS rather than to draft specific regulatory changes. Nevertheless, the MSC directed that after the process of identifying the problem provisions is completed, the exercise must move on to assessing the best way to resolve possible conflicts between each identified regulation and MASS operations. The suggested options for doing so are: amending the problem regulation; using “equivalencies” and creative interpretations as a way to find compliance with the regulation; or adopting new regulations specifically addressed to MASS operations.

Continued over on page 3.
WITH THE PANAMA CANAL EXPANSION PAVING THE WAY FOR LARGER SHIPS TO CALL AT DIFFERENT PORTS, MSRC PROPOSES:

- Four Fully Equipped Interactive Simulators, networked to a common simulation control system
- Perfected own ship models suitable for pilot training and advance maneuvering
- In-house Modeling Capability which allows building, modifying or customizing:
 - Exercise Areas
 - Ship Models

LEADING-EDGE TRAINING DEVELOPED BY PILOTS FOR PILOTS

- Ship handling in Restricted Waters for Pilots
- Escort Operations for Pilots
- Docking manoeuvres
- Advanced (Pilotage) Radar Techniques in Restricted Waters
- Post-Panamax Vessels: New Challenges for Pilots
- Emergency Shiphandling Procedures for Pilots
- Other specific training programs developed on request

“After visiting numerous simulators over the years and then spending a full week in MSRC Quebec City, it was clear this is the best we’ve seen. With a combination of world class equipment and a world class team of maritime experts, MSRC stands apart from the rest.”

Captain Mike Armstrong
Fraser River Pilots, British Columbia, Canada
Director, Canadian Maritime Pilots Association

FULL TURNKEY SERVICE FOR OPERATIONAL FEASIBILITY STUDIES

- Ports preparation for the arrival of larger container ships
- Ship handling in Restricted Waters and Channels
- Assessment of limitations
- Tug Operations and Docking Manoeuvres
- Escort Operations

“For any port authority or engineering firm interested in port development, the simulation facility at MSRC represents one of the most comprehensive combinations of equipment, technology and pilotage expertise available in the world. Furthermore, its in-house pilotage expertise coupled with other commercial partnerships, ensures that the majority of practical risk and maneuvering analysis can be conducted at the preliminary and intermediate levels of port design, presenting clients with a solution that is workable and that can be fully demonstrated and validated to port authorities and pilotage associations using high fidelity interactive simulations.”

Captain Gariard Hardy
President, Lante Marine Inc.

EXPERIENCE QUEBEC CITY AND ITS UNIQUE ATTRACTIONS

A visit to the MSRC is already a unique experience in itself, why not take advantage of the opportunity to discover all the beauty and wealth of one of the oldest port cities in North America... the majestic City of Quebec!

You are sure to be delighted by its heritage sites, its picturesque neighbourhoods, its artistic and cultural activities, and its gastronomic treats!
Message from the Secretary General

Dear Colleagues,

I would like to begin by congratulating our Senegal members on the conference which was a great success. Having finished in Dakar it was straight off to Panama to try and make some progress on ISO799 and then followed by two weeks at IMO for MSC99. My garden looks somewhat shabby as a result!

Senegal bought some welcome positives, certainly to me. We had a strong field of candidates for the VP elections. This is an indicator of health of an organisation I believe. Subscriptions were held steady and we enjoyed some very positive comments from our guests on the level of debate and the quality of presentations. A lot of Pilots have hidden presentation skills!

It was good to meet so many members, both new and “mature”(!) in Dakar a and it’s always helpful to re-connect with member groups to ensure the support we offer is in tune with members’ needs.

Membership continues to grow and we welcome Lebanon (Beirut) who joined just after the conference. There are a number of other applications in the pipeline too. An interesting situation arose at IMO MSC99 in May whereby a national delegation whose pilots are lapsed IMPA members wanted to talk to us about safety. This put us in a difficult position and the Pilots in the country concerned were advised.

The forthcoming immediate priorities for us are:-

- Completing the “Pilotage MSP6” for inclusion in the E-Nav Maritime Service Portfolios. This is underway with an IMPA ‘Wise Man’ group.
- Meeting with the ‘Round Table’ (ICS, INTERTANKO, OCIMF) to discuss MPX.
- A further meeting with Carnival (at their request).
- Organising the 2018 Safety Campaign.

This is in addition to the ‘normal’ work of attending IMO for things like HTW in July, and the upcoming International Harbour Masters’ conference (which thankfully is in London!).

Nick Cutmore

Continued from front cover.

At the MSC session, the Committee established a working group to develop a schedule, plan of work, and a methodology for the exercise. The working group’s report was eventually adopted by the Committee, including its proposal for a correspondence group, which was directed to begin work “as soon as possible.” The chairman of the correspondence group is an official with the Transport Safety Agency of Finland - one of the countries most strongly promoting autonomous shipping.

I participated in the working group at the MSC session. Frankly, I was dismayed at the quality of the discussions within the group. Many of the participants, especially the most vocal ones, appeared to have little or no real-world experience with ship navigation and lacked understanding of the realities of ship operations and the role that IMO regulations play in ensuring safety. What these participants did seem to have a lot of, however, was zeal for rushing ahead with unmanned or remotely controlled ships.

We should be concerned about any effort to construct a new international regulatory regime for ship operations, even one ostensibly limited to autonomous ships. The existing collection of IMO instruments work together to establish a well-known, well-understood safety system that has been developed over many years. Tampering with a large number of selected provisions in the different instruments is bound to have unintended consequences – at best.

The piloting profession has a special reason to be concerned about the scoping exercise and what will follow it. Several countries and autonomous shipping enthusiasts have already complained that compulsory pilotage requirements will hamper unmanned or remotely controlled vessel operations. They have proposed that the IMO exert control over pilotage, through an international system of pilotage exemptions and other measures, to prevent port state interference with such operations. As one indication of this prospect, Norway made a presentation at the MSC session describing changes that it is considering to its domestic pilotage laws to provide exemptions to pilotage requirements for autonomous ships and to recognize “remote pilotage” as a component of what it sees as the future of ship operations.

We are committed to engaging fully in the scoping exercise and in other aspects of the autonomous ship movement and will use our best efforts to protect navigation safety and the piloting profession.

Simon Pelletier
5P’s to make you more PPU ready

Sam Ransara – Engineering and Production Lead at Navicom Dynamics.

Due to the increased complexity of modern day piloting which demands the ability to handle large ships safely and efficiently, it is becoming more common for pilots to bring their own portable navigation systems onboard with them.

In general, these pilot/port owned portable devices are referred as Portable Pilot Units (PPUs). These provide an additional source of navigation information which usually cannot be generated accurately by the ship’s systems hence facilitating decision making for a safe and efficient pilotage. The accuracy of the PPU is deterministic and can be maintained and augmented to meet the demands of the port and pilotage in contrast to the vessels’ fixed ECDIS system.

The following five points would warrant safety and efficiency of the piloting operations with PPUs.

1. **Power** –
 It is always a good idea to keep the PPU charged, which ensures it is ready to go anytime. This includes the main sensors (Navicom Dynamics HarbourPilot, ChannelPilot or GyroPilot), auxiliary augmented sensors if any (Navicom Dynamics GyroPilot Plus, GyroPilot Triteia), and the display that runs the ECS software. Since proper functionality and expected runtime of these components are crucial for successful and safe pilotage, keeping everything charged is of primary significance.

 If the user intends to keep a PPU as a backup unit or store a PPU to use in an event of a failure of a unit on operation, he must ensure that all the components are charged at least up to 50% and store in a cool, dry place. Needless to say, that the stored unit need a full charge before commencing the operation.

 It is not advisable to fully charge the PPU and store it for a prolonged period as this practice will reduce the lifetime of the batteries. The user should always use the chargers provided for the respective PPUs as they are designed to provide accurate levels of charging demanded by the PPUs, which ensures guaranteed runtimes and prolonged battery life.

2. **Plan** –
 Before commencing the pilotage, the user needs to have an action plan. This includes ensuring the connectivity between PPU and display, setting up tidal information, tidal stations and ship data on ECS system. Ensure that the display and the ECS kept in up-to-date with their latest operating system updates and software updates which guarantees the reliability of the system. In addition, it is always a good idea to check whether the electronic charts (both vector and raster) has updated recently and whether they manifest the reality at the port, terminal and the channel. For example, an older vector/raster chart might not have the latest information about the channel and may not have the recently constructed features included within. Also, the user should plan his route before and in case using a saved route, ensure that the critical features of the route, such as waypoints and turning radius are appropriate for the pilotage.

3. **Pack** –
 After ensuring that the sensors and augmented antennas can successfully communicate with each other and the display, the user should pack the PPU before the pilotage. Many users prefer to leave the laptop in either sleep or standby mode that ensure minimal power consumption prior to commencing the pilotage while guarantees a quick start-up. Making sure that there are no pending operating system updates is also recommended as such an update while performing a pilotage may render the display unusable for a significant amount of time. Also, the user should check that he has all the necessities for the pilotage including the paperwork and radio.

4. **Position** –
 HarbourPilot, ChannelPilot, GyroPilot Plus and GyroPilot Triteia require a clear view of sky for their operation. Always make sure that there are no metal structures overhanging or obstructing the sky view. Position the sensors and the antennas strictly as described in product manuals and training presentations, while noting the mounting coordinates. Enter or verify the pre-programmed coordinates of the PPU within the ECS settings. This step is vital for precise pilotage as an inaccuracy in position of the ECS system would result in offsets of the ship on the electronic navigational charts. Also, the user must confirm that data is coming from the sensor and there are no erroneous offsets being set for the position and heading information.

5. **Pilotage** –
 The PPU is now ready to provide with the information that the user needs to ensure the safety of the ship, the port and the environment. All the above described techniques would ensure the safe and efficient pilotages. Certain features in the ECS can record the voyage for future playback or training purposes.

Figure 1 Tidal Stations Setup - Qastor 2.5.
Figure 2 Transit Setup and Heading Correction Qastor 2.5.
World Leading Portable Pilot Units and Precision Navigation Systems

Whatever your outlook, conditions or position...

Night or Poor Visibility

Confined Berthing Solutions

Channel Navigation

Ship to Ship Transfers

...We have the solution for you.

Accurate & Reliable
 Compact, Robust & Portable Design
 Improved Safety & Work Efficiency
 Satisfied Customers in over 30 Countries

sales@navicomdynamics.com | www.navicomdynamics.com | Call: +64 99155330
Office Address: 2 Parkhead Place, Albany, Auckland, NZ 0632. | Postal Address: PO Box 302 193, North Harbour, Auckland, NZ 0751.
Follow us on:

Announce the code PILOT2018 when you contact us to receive a special promotion.
Pilot Boat Capsized Due to Wake and Currents

Reproduced from The Maritime Executive, 2 January 2018.

A preliminary investigation into the capsize of the pilot boat L242 has determined that the craft did not collide with the vessel it was approaching at the time of the accident. Instead, a combination of swells, the wake from the nearby ship and powerful currents led to the capsize of the boat and the death of two individuals on board. Based on information gathered so far, investigators believe that the boat was pushed over to 90 degrees by the combination of these forces. It remained at this angle temporarily, then fully capsized.

At 1700 hours on December 8, the Swedish Maritime Rescue Center Helsinki received notification that a pilot boat had capsized east of Helsinki. The Finnish Border Guard dispatched boat units from Suomenlinna and Porvoo, along with helicopters from Helsinki and the patrol vessel Turva. The responders attempted to parbuckle the pilot boat, but it sank during the righting evolution. After the sinking, divers searched the interior and found the bodies of the boat’s two crewmembers.

The boat was carefully refloated and salvaged in mid-December, and it has been brought ashore for investigators to examine. The inquiry is expected to last until next summer.

According to Jens Ahlsko, CEO of boat manufacturer Kewatec Aluboat, L242 was designed to recover from a roll of up to 75 degrees - well in excess of the 60 degree minimum required by regulations. Once the boat rolled over, though, it would have flooded through its ventilation system. The vessel was compliant with all design and construction standards, and orders for the same model continue to come in, he said.

However, Ahlsko suggested that regulatory requirements may change in response to the fatal casualty. Some pilots’ associations in other parts of the world - like those for the Columbia River Bar, Oregon, the port of Timaru, New Zealand and Port Adelaide, Australia - operate self-righting boats that roll over to recover from a capsize.

IMPA Safety Campaign 2018

By John Pearn – IMPA Vice President and Chairman of the Safety Sub-Committee

Dear Colleagues

IMPA continues in its tireless efforts to increase pilot ladder safety. The Annual Pilot Ladder Safety Campaign is a very positive means of educating the Industry about the hazards of pilot boarding and it is time once again to remind you that the Safety Campaign will run from 1-14 October 2018. We cannot over-emphasise that the veracity and force of the statistics relies on the number of responses received. The message is now hitting home in the Shipping Industry with the survey results being eagerly awaited by the likes of the International Chamber of Shipping (ICS), and many other stakeholders at IMO. Therefore may I urge all members to support the campaign by reporting on all transfers they make during the campaign period.
Comment by Houston Pilot Capt Michael Phillips

Captain Michael Phillips, one of the two Houston pilots recognised by the IMO for their role in protecting the lives of the crew of crude oil tanker Aframax River during a 90-minute blaze, said of the increased safety risk in the Houston Ship Channel “Shipping channels are not getting any bigger but ships are getting a whole lot bigger and faster. We’ve previously never had ships of this size......No one asked us about 300m ships. We would have said to dredge a new port far away, but no one bothered to ask us.”
Grounding Report: Pilot Lacked Information After Engine Failure

Reproduced from The Maritime Executive, 4 February 2018.

The U.S. National Transportation Safety Board has released its report into the grounding of the bulk carrier Nenita, citing that the pilot did not have enough information relayed to him about an engine failure that impacted maneuverability at a critical time.

On November 19, 2016, the fully-laden bulk carrier Nenita, registered in the Marshall Islands, was outbound on the Columbia River when the vessel suffered an engine failure. The vessel subsequently ran aground at Three Tree Point on the Washington State side of the river, damaging its bulbous bow and hull. After the grounding, the Nenita was towed to Longview, Washington, for temporary repairs. Two weeks later, the vessel resumed the voyage to its original destination. There were no injuries or reported pollution as a result of the accident.

The National Transportation Safety Board determined that the probable cause of the grounding of the bulk carrier Nenita was the failure of a main engine cylinder cooling jacket that initiated an automatic reduction in engine speed, resulting in the eventual loss of steerageway. Contributing to the accident was the lack of information relayed from shipboard personnel to the pilot about the status of the main engine, which prevented him from taking effective corrective action following the engine casualty.

Accident Events

About 0230 on November 19, the main engine cooling fresh water low pressure audible alarm sounded and the visual alarm illuminated on the display panel in the engine control room. The chief engineer acknowledged the alarm as the second and third engineering officers left the control room to identify the source of the alarm condition.

The third engineer discovered a crack on the main propulsion engine no. 3 cylinder cooling jacket located near the base of the cylinder cover. Cooling water was reportedly leaking from the cracked cooling jacket at approximately five to 10 gallons per minute. The chief engineer told investigators that he immediately notified the bridge of the failure via the ship’s phone.

A minute later, the no. 3 cylinder cooling water outlet high temperature above 95 degrees C (203 degrees F) alarm activated, which automatically initiated an emergency slowdown of the main engine to below 30 rpm. This function was designed to protect the engine from damage due to the loss of cooling water until the abnormal condition was corrected. About a minute later, the main engine cooling water expansion tank low level alarm activated followed by the cooling water outlet high temperature alarms on the remaining six cylinders. The second engineer closed the cooling water inlet and outlet valves to the no. 3 cylinder while the third engineer started to refill the expansion tank with water.

Meanwhile on the bridge, at 0231, the pilot ordered port 20 degrees rudder and then instructed the helmsman to steer a course of 270. About 0232, after feeling a reduction in vibration, the pilot asked, “Hey, what happened to our engine?” The VDR showed a drop in speed from about 90 rpm to 48 rpm while the engine order telegraph was still in the Nav Full ahead position. At the time of the rpm reduction, the vessel was making about 11 knots.

Soon after, the VDR captured audio of the master talking on the ship’s phone to the chief engineer and watch engineer inquiring about the loss of rpm on the main propulsion engine. The conversation between the master and the engineering personnel was not conducted in English, and thus the pilot could not understand the discussion. A minute and a half into the phone call with the chief engineer, the master told the pilot about a “leaking pipe on the main engine … They are fixing it.” During the next 10 minutes, the phone conversation between the master and engineering personnel continued in their native language. The pilot asked several times, “What’s going on with the engine?” and stated, “I need some rpms.”

After the pilot questioned the engine performance, he ordered the rudder to midship and instructed the helmsman, who was trying to maintain the ordered course of 270, that he might have to use a lot of rudder due to the loss of rpm. The master then shifted the engine order telegraph down to dead slow ahead one position at a time to match and go below the actual engine rpm, which had now decreased to about 35 rpm.

At 0235, the Nenita’s engine rpm decreased further to 25. The master asked if the ship should anchor, and the pilot responded that in the vessel’s present location there was not a place to safely anchor without going aground, primarily due to the anticipated change in current from flood to ebb.

A few minutes later, the pilot radioed ashore inquiring about the availability of two tractor tugs to assist the Nenita. From this point until the last moments before the grounding, the pilot asked the master with increasing urgency and exasperation the status of the engine, the availability of more engine rpm, and the ability of the engine to go astern. He made clear to the master that the lack of engine response was putting the vessel at risk of running aground. The master was likely relaying the pilot’s questions and concerns to the engine room while on the phone, but the conversation was only in his native language, and he never responded back to the pilot in English.

The Nenita continued to decrease in speed, now making about 6 knots at about 25 rpm ahead as it passed navigation marker “27” on the north bank of the river. The pilot ordered increasingly large helm orders to port and starboard to maintain the center of the channel; however, steerageway eventually was lost, and the vessel began to drift to starboard. The pilot, having received no verbal acknowledgement from the master about the engine status, ordered both anchors dropped and then ordered the engine to emergency full astern.

At the same time that the anchors were being ordered let go, the engine momentarily increased speed to about 65 rpm ahead. The engine speed then began to decrease and reversed to about 75 rpm astern, likely in response to the pilot’s last command, emergency full astern. At 0246, the Nenita ran aground at Three Tree Point in Washington State. Consequently, the pilot ordered the engine stopped and commenced making initial calls to the appropriate authorities.
Poorly Maintained Pilot Ladder Results in Rapid Transfer

Reproduced from MAIB Safety Digest Accident Reports 1/2018

Three engineering technicians were preparing to disembark from a 180m long bulk carrier that was departing from port. The technicians had completed works on the ship during its outbound river passage.

The bulk carrier was in ballast with a freeboard of more than 11.5m. At the pilot’s request the ship’s crew had rigged a combination ladder on the starboard side, comprising an accommodation ladder and pilot ladder. A pilot boat came alongside with the intention of embarking the three technicians followed by the port pilot. The ship’s bosun and an OS were at the ladder to supervise the disembarkation.

The three technicians proceeded to walk down the accommodation ladder to the top of the pilot ladder. With the pilot boat in position alongside the ship’s side, the first technician began to descend the pilot ladder.

The first technician was about 1.5m from the pilot boat’s deck when the second technician stepped onto the pilot ladder. The pilot ladder immediately failed. Both of the ladder side ropes parted, and both technicians fell approximately 1.5m and 7m respectively (Figure 1). Both were subsequently taken to hospital by ambulance, but fortunately neither sustained serious injuries.

The pilot ladder that had failed was only 15 months old. An internal investigation by the company found that the pilot ladder side ropes had failed through exposure to salt deposits and sunlight (Figure 2), which the ship’s crew had not identified.

In this case, the relatively new pilot ladder had not been properly maintained and stowed, and deterioration to the pilot ladder side ropes had not been identified. Do not store ladders on an open deck where the ropes are exposed to contaminants or elements that can degrade the ropes (Figure 3). After use, ladders should ideally be hung up clear of the deck and stored wherever possible in a clean, dry environment. They must also be protected from oil, chemicals, paint, or any other source of contamination that could affect their strength.

Routine maintenance inspections of pilot ladders should be a part of the ship’s planned maintenance system. Inspections should include opening the rope splice to view the internal state of the material.

The SOLAS convention also states that ‘embarkation of a pilot shall be supervised by a responsible officer having means of communication with the navigation bridge’.

In this case a responsible officer was not monitoring the transfer of personnel to the pilot boat.

Pilot ladders should never be used by more than one person at a time. Use by multiple persons may overload the ladder and may cause it to move.

The Lessons

1. The IMO Convention for Safety of Life at Sea (SOLAS) Chapter V, Regulation 23, sets out the principal requirements for the rigging of pilot ladders. This regulation states that ‘Pilot ladders shall be kept clean, properly maintained and stowed and shall be regularly inspected to ensure that they are safe to use. They shall be used solely for the embarkation and disembarkation of personnel.’

2. Routine maintenance inspections of pilot ladders should be a part of the ship’s planned maintenance system. Inspections should include opening the rope splice to view the internal state of the material.

3. The SOLAS convention also states that ‘embarkation of a pilot shall be supervised by a responsible officer having means of communication with the navigation bridge’.

In this case a responsible officer was not monitoring the transfer of personnel to the pilot boat.

4. Pilot ladders should never be used by more than one person at a time. Use by multiple persons may overload the ladder and may cause it to move.
Figure 1: Stills from CCTV showing failure sequence.
What is your role at IMPA and what does it entail -
As Chairman of Safety Sub-Committee, I acquaint myself with any safety issues which come to the attention of IMPA. I consult with the other sub-committee members to arrive at an acceptable position for IMPA. One of those tasks is coordinating the annual safety survey which is presented by IMPA to IMO.

What is the best part of your job? -
The best part of my role at IMPA is meeting with pilots from around the world. Through the IMPA conferences I have attended I have made many good friends with pilots from many different countries. The benefits of such networking provide for the sharing of experiences amongst pilots. Many of the issues we encounter are not unique, and often colleagues from other parts of the world can help you find a solution to such problems.

What happens during an average day at work as a pilot? -
At Milford Haven, we work a 24 hour shift pattern, with 2 other pilots on duty for that period. We are required to live within 15 miles (24KM) from the pilot station. When I am required for a vessel the VTS office gives me 30 minutes notice to get to the pilot station. We can be called to serve any vessel ranging from small coasters or fishing vessels up to VLCCs and Qmax LNG vessels. No two days are ever the same.

What are you most proud of? -
My two sons.

Tell us three things we wouldn’t ordinarily know about you? -
I enjoy hiking, cycle touring, travelling and going to rock concerts.

What’s your guilty pleasure? -
My garden shed, which has been converted into a ‘Man Cave’. It has been fitted out with a TV, Wifi, wood burning stove, pool table, bar and sauna.

IMPA President and Secretary General Attend the IALA Biennial Conference in Incheon in June

Simon Pelletier and Nick Cutmore took time out to meet with the Korean Maritime Pilots. They also took the opportunity to join IMPA VP Captain Jason (Yeong-Sig) Choi on a pilotage job into the Port of Incheon. The photos show a small bulker lock-bound. Interestingly the photo was taken from the bridge of an in-bound ro-ro by Eugene Bak, Assistant Manager of KMPA.
WORLD-CLASS TRAINING FOR PILOTS, BY PILOTS
Our immersive training offers real-world experience on the water.

On-Site Manned Model & Simulator Training
Custom Course Development Available

Enroll Today »
MaritimePilotsInstitute.org/courses
or 985.867.9789

Locus
Managing Entity of MPI
Customized consulting.
Reliable insights.
World-class maritime consulting, from
cockpit and waterway simulation to robust
virtual simulations.

For more information
call 410.384.7302 or
visit locus1.org
Memories of the Pilot Cutter EDMUND GARDNER
by Glyn L Evans

Alun Pari Huws recounts in his own words his memories of Pilot Cutter the Edmund Gardner.

The year was 1974; I had just completed by ‘O’ levels and turned 16. My father, Captain Gwyn Pari Huws was, at that time, Marine Operations Manager with Ocean Transport & Trading and a member of the Liverpool Pilotage Authority as a ship owners’ representative. On my behalf he enquired about vocational work, and secured two weeks employment for me as a relief mess boy aboard the pilot cutters prior to our annual family holiday in Anglesey.

I joined the ship on a Friday which was ‘change day,’ having spent the previous day with the ship’s bosun or third hand checking stores at the rear of the Pilot Service’s headquarters in Salt house Dock, now part of the Merseyseide Maritime Museum where the Edmund Gardner is permanently exhibited in dry dock. I had little idea what was expected of me and cannot recall how I made my way to Collingwood Dock along with my kit where the ship was then moored. I do recall that I somewhat presumptuously took a cap! This had been a gift from an old family friend, Capt R. Ll. Jones, a recently retired master with the Mersey Docks & Harbour Board. At that time there were three working pilot cutters, the Edmund Gardner, the Thomas Brocklebank and the Arnet Robinson. They worked two weeks on duty and one week off with one cutter working the Bar and one stationed off Point Lyanas, Anglesey, the western station. I think my father had hoped that I would experience at least one of my two weeks posting at Lyanas but it was not to be for the Edmund Gardner was to spend that particular two weeks stationed on Liverpool Bar.

To me, at 16, and despite my experience aboard ocean-going ships in the company of my father while they were in Merseyseide docks, the ship seemed big and it took a little while for me to get my bearings. It seemed that the ship was in two halves with the pantry creating a divide. Forward was the pilots’ dining room and television lounge. Above this were the masters’ cabins and the pilots’ ante-room and above this again, the bridge. Below the main deck forward were the pilots’ cabins. Adjacent to the pantry was a short companionway across the ship connecting the two companionways which ran down the length of the after part of the ship, separated for the most part by the engine room space. The crew and apprentices berthed in the after part of the ship.

Either side of the main deck, off the companionways, were the boarding stations, accessed via watertight doors, from where pilots would board the working boats or ‘punts’ that would take them to ships requiring a pilot. On the starboard side were cabins for the engineers and greasers, along with their ‘heads’ and a drying room. There was a also a small messroom for the greasers. On the port side was the pantry and cold store, abaat this the galley, the boarding station and then cabins for the messboys, cook and steward. There was also a small messroom for the catering staff. Behind the engine room space the companionways joined up where there were two shower cubicles although I seem to recall that one was full of vegetables at the time!

Aft of the messboys’ cabins was a doorway leading to the apprentices’ ‘heads’ and washroom and two ladders leading to the lower deck, one way to the apprentices’ cabins and the other to their messroom. This was a rather uninteresting space which included a small pantry with an oven to keep food hot and a large sink. The main feature was the mess table of irregular shape and the predicatable coamings to keep plates on the table in heavy weather!

The apprentices’ quarters were in a space immediately above the steering gear and propeller shaft so when the ship was under way, the whole area vibrated noisily. I saw little of the pilots’ accommodation although recall one occasion when the mate secured agreement for the apprentices to watch television. This was then a rare treat.

The Edmund Gardner had two functions. First and foremost she was a working pilot cutter there to provide pilots to ships entering Liverpool from the north channel of the Irish Sea and to pick them up from ships leaving. Launches from Liverpool ferried pilots to and from the cutters and it was the success, significantly reduced running expenses and ability to cope with heavy weather, of these launches that led to the demise of the cutters in due course. Secondly, the cutters were training ships for apprentice pilots. I believe that the apprenticeship lasted seven years, two or three of which were spent at sea enabling the apprentices, as was a requirement of the authority, to obtain second mate’s certificates of competency. The rest of their time was spent aboard the cutters, working the punts, working the ship and learning the intricacies of passages in and out of Liverpool in all states of tide and weather. The ship had two masters, both senior pilots. The two most senior apprentices or ‘senior hands’ acted as first and second mates working 4 hours on and 4 hours off. The third hand acted as bosun and it was his responsibility to maintain the ship in good working order and supervise the remaining apprentices (or boat hands) under the direction of the mates.

The catering department consisted principally of a cook and a steward. I can see both their faces to this day. The cook was known as Paddy but I cannot recall the steward’s name. Both cook and steward had ‘boy’ assistants. Additionally, there were two messboys, one for the apprentices and one for the engineers and greasers. I was the apprentices’ messboy and my duties were to take prepared food down to the apprentices’ quarters, keep it hot and serve it when directed by the senior hand present. Watch changes meant that there was always one later arrival. I would then have to clear up, wash the dishes and empty the ‘gash’ bucket of waste. It was also incumbent on me to keep the mess room clean and tidy. Apart from this I helped the cook’s boy with meal preparation and many hours were spent peeling potatoes. I think that more potato went over the side in peelings that went into the pan!

There was no shortage of food with at least two square meals per day albeit of plain fare by today’s standards with a full English breakfast every day. I recall little of evening meals but was fascinated by the cook’s ability to cook almost anything on the top of his range without going into the pan!

The advanced ADQ-2 provides AIS Pilot Plug Connector with Rate of Turn functionality along with independent and accurate Rate of Turn measurements at an attractive price point. In combination with a suitable ECS package of your choice, the ADQ-2 is the ideal tool for applications like coastal pilotage and basic maneuvering.
AIS Pilot Plug Connector with Rate of Turn

The advanced ADQ-2 provides AIS pilot plug functionality along with independent and accurate Rate of Turn measurements at an attractive price point. In combination with a suitable ECS package of your choice, the ADQ-2 is the ideal tool for applications like coastal pilotage and basic maneuvering.

www.adnav.com

SPECIALISTS IN PRECISE GNSS NAVIGATION

so recorded, I had done enough time to be granted a Helmsman’s Certificate of Competency.

My two weeks were contrasts in weather. For the whole of the first week, it was miserable, wet and uncomfortable with a near gale blowing much of the time - at least that is my recollection - in reality it was probably no more than a force 4 but it made the taking of trays laden with food aft from the galley, through doors and down ladders a challenge for a novice mess boy. The second week was fine and clear and it was uncomfortably hot below decks at times especially, of course, around the galley. Time spent on the bridge during this week was most pleasurable, particular during the late evening when the whole of the coastline from Llandudno to Cumbria would be lit by the setting sun and the Liverpool skyline visible from the Bar. It was during one of these evenings that one of the mates and I tried to make out an unusual shape heading down the channel which transpired to be the conning tower of one of HM’s submarines!

After I had discharged from the ship at the end of the two weeks, I went to the Dock Board building at Pier Head and made my way to the pay office. The pay-slips have, regrettably, long gone but I think I was paid £36 for my two weeks. This included holiday pay granted by a generous pay clerk, a small fortune to me at the time and my first proper pay for any kind of work. It was some years before I appreciated that my brief experience was worth far more than £36.

Editors Note - John Pearn, IMPA’s VP for Safety (see page 12), and UKMPA Pilot Martin James, both began their seagoing careers as apprentice pilots on the Edmund Gardner, in 1979 and 1978 respectively. John recalls the Steward’s name was Brian – how’s that for a memory!
XXIV IMPA Congress – Dakar – a Retrospective

CAPTAIN OUMAR DRAME, IMPA Vice President.

The Senegalese Pilots hosted maritime pilots from across the world for the 24th Congress of the International Association of Maritime Pilots (IMPA 2018) from 22nd to 27th April, 2018 at the King Fahd Palace Hotel in Dakar, Senegal (West Africa). After London, United Kingdom in 2012; Panama, Central America in 2014 and Seoul, South Korea in 2016, this biennial event introduced a new culture as it was the first time it has been held in Africa.

The Senegalese Minister of the Maritime Economy, Oumar Gueye and the Dakar Port Authority’s General Manager, Aboubacar Beye took part in the opening ceremony in person, in view of the importance of the Congress for the maritime transport sector. The Secretary General of the International Maritime Organisation Kitack Lim also addressed a warm message to the participants during the opening session by video.

According to the local press releases and various feedback and messages received from the participants after they reached home, this latest conference was a great success in more ways than one. In terms of participation, more than 250 delegates and 80 accompanying persons from 50 nations took part in the Congress. Furthermore, it was also a memorable occasion to welcome around 40 guests from fifteen African countries. Beside Senegal, Morocco and Ivory Coast as IMPA delegates, Mauritania, Gambia, Guinea, Benin, Ghana, Nigeria, Congo, Angola, Namibia, Algeria, Tunisia, Sudan, Cabo Verde, Gabon, Guinea Bissau with Dubai, were able to discover the IMPA Organisation and to share experiences with pilots from the other parts of the world.

During the week-long event, participants discussed and explored key issues affecting maritime pilots, ports and harbours globally. This was an advantage and opportunity for African colleagues who are not yet IMPA members, to attend to and to share their best practices, professionalism and maritime heritage and knowledge with our International guests. The sponsors and exhibitors had also an exclusive opportunity to not only meet with existing clients and industry partners but also have unique access to directors and other decision makers of more than fifteen African ports who were invited to this exceptional event.

The Congress was the perfect opportunity for pilots, experts and industry to talk about their experiences and studies regarding personal safety, technical advances and innovation, environmental issues, laws and regulations, training and professional development and responding to the ever-changing profile of the shipping industry. This influential international gathering discussed the next evolutions in the maritime and port sectors, in order to provide essential information regarding pilotage and port operations now, and in the future to empower the safety and professionalism of every pilot in the world.

More than 20 world companies also participated in the exhibition where they presented cutting edge products and technologies which could help and assist pilots in their daily work.

In terms of discovery, the main places of interest of Dakar and its surroundings were visited by the delegates. Amongst them, Goree Island, the Pink Lake and the reserve of Bandia welcomed delegates for moments of unforgettable discovery. Participants had time to network and to socialize during the welcome reception and the gala dinner offered by the Senegalese pilots where there were some outstanding moments to experience parts of the African culture.
Oumar Dramé, Jean-Philippe and Florence Casanova.

Birthday congratulations given to EMPA President Stein Inge Dahle.

Sharon Diamond, Ani Viso and Debra Brown, USA.

Oumar Gueye, Senegal Minister for Maritime Economy addresses the Congress.

Speakers Matthew Williams, ICS, and Johan Gahnström, INTERTANKO.
Sidy Lamine Diop, Secretary General of Senegal Pilots’ Association, addresses the Congress.

Captain Peter Liley, Australia.

Eric Nielsen, Robert Shearon and Clay Diamond, USA.

Conference Auditorium.

Eric Nielsen and Jean-Philipp Casanova

Ricardo Falcão and Jean-Philipp Casanova

Simon Pelletier addresses the Congress.

Simon Pelletier addresses the Congress.

Sidé Lamine Diop, Secretary General of Senegal Pilots’ Association, addresses the Congress.
First published in 1997, with a second edition in 2002, Tug Use in Port by Capt Henk Hensen is known as the ‘tug bible’ – the essential practical guide to port towage and escort operations.

A Since the publication of the second edition, developments in tug design and operation have continued to improve tug capabilities as well as effective and safe tug use. Sadly, there have still been a number of accidents, often with dramatic consequences. Now, Capt Hensen has revised, updated and added to this invaluable textbook, with the third edition published in June by The ABR Company.

Some significant changes have been made in this third edition, including the addition of several new tug designs, as well as terminal tugs, environmentally friendly tugs, Japanese style tugs, and tugs that operate in icy conditions. Tug assistance in ports and ice-covered fairways is further addressed, as is tug assistance in locks. Bow-to-bow operations are discussed in more detail. Stability has been further explained, along with recommendations for tug masters with respect to stability.

Environmental limits for tug operations are discussed, based on the results of the SafeTug joint industry project, and attention is paid to operating in fog conditions. The impact of crew reduction, another important item, is also addressed.

Information on towing winches, towing hooks, towlines, towline friction and SWLs of ship’s deck equipment has all been updated, and the need to use proper heaving lines addressed.

New aspects of training are included – such as training for LNG tugs, LNG locations, ice and wave conditions – as well as new developments in training tools, such as specific tug simulators, small training and miniature tugs. New technical developments, such as virtual and augmented reality, are also discussed – along with use of simulators for human factor studies. The escort chapter has been thoroughly reviewed, including the reasons for escorting and an update on various escort regulations, and the topic of autonomous ships is discussed, including the possible effects on tugs and tug operations.

The important issues of risk assessment and safety management systems are newly included in this edition, along with commentary on the effects of the US Subchapter M.

Hensen said: "This book is specifically written with the needs of maritime professionals involved in the day-to-day practice and training of ship handling with tugs in mind, particularly pilots, tug masters and training instructors. "It should also be of value to towing companies, shipmasters and mates of seagoing vessels and all other persons or organisations involved, one way or another, with tugs and ship handling."

"It is my earnest hope that this book will contribute to an improved knowledge of tugs and lead to increasing safety in tug and ship handling operations in ports, port approaches and offshore terminals around the world."

The large-format hardback book is illustrated with a wealth of detailed diagrams, graphics and photographs.

The book has been launched at ITS 2018 in Marseille which took place from 25-29 June 2018. It can be purchased at: www.tugandosv.com at a price of 45 Euros.
IMPA welcome two new members to their executive

Elections were held at the General Meeting in Dakar for four Vice Presidents and we are pleased to welcome Captains Oumar Dramé (Senegal) and Jason Choi (Korea) to the IMPA Executive.

Vice Presidents Ricardo Falcão and John Pearn were re-elected for a further 4 years.

Worst Ladder

Does the ‘Worst Ladder’ prize go to the flagship of the Latvian fleet?
Port Ash Australia utilises manned ship models to provide real feel, real world training on its purpose built 2 Ha (5 acre) lake, and employs experienced Marine Pilots to provide world class training.

Providing specialised training for:

- Masters
- Officers
- Marine Pilots
- Naval Officers

+61 (0)2 4987 0029 TRAINING@PORTASH.COM.AU
A Trend Analysis of Commercial Shipping Breakdowns and Deficiencies in the Port of London 2016 and 2017

A frequent conversational topic amongst Pilots is the unreliability of vessels, particularly the number of propulsion or steering failures. Power outages due to generators tripping or failing and engines failing after fuel switchover are commonplace, yet rarely documented in some sort of framework.

We are therefore very grateful to the Port of London Authority for permission to reproduce the following article which clearly sets out one port’s analysis.

Overview

Around 35% of all Commercial Shipping occurrences in the Port of London are due to breakdowns. This report analyses these breakdowns by the type, size and age of vessels.

Breakdowns per Vessel Type

- **New ships** (0-5 yrs) have a high breakdown rate - 6 breakdowns per 1000 voyages.
- **Large ships** over 300m LOA have a high breakdown rate of nearly 8 breakdowns per 1000 voyages.
- **Container Ships** have the highest overall breakdown rate of all vessel types - 5 breakdowns per 1000 Voyages. A large number of the Container Ships visiting the Thames being newly built and over 300m.
- **Navigational equipment failure** is the most common breakdown at 13% and the biggest root cause being power failure -10%.

Causes

- Container Ships are designed to travel over long distances efficiently and their engine configurations are less suitable for manoeuvring within a Port / Harbour compared to a ferry with CPP for example.
- Do Container Ships have sufficient time to carry out preventative maintenance and checks?
- Newer ships may have more breakdowns due to a period of ‘running in’, where small technical issues become apparent. Also, modern ships have additional sensors, monitoring equipment, engine software, etc. which may shut down engines rather than run at reduced efficiency.

Are these trends familiar?

- This analysis has been shared with relevant berths/terminals in London, Ports local to London, UK Chamber of Shipping, International Association of Classification Societies, UK P&I Club, UKMPG, BPA and MAIB.
- Do these trends appear in your Port? We’d appreciate any comment or feedback to add to our analysis. SafetyManagement@pla.co.uk

Definitions

Commercial Shipping: Occurrences involving sea-going commercial ships.
Voyage: A movement into or out of the Port by a commercial ship.
Breakdown: Any incident, near miss or reported deficiency caused by failure of equipment or machinery.

Continued over on page 24.
BANANAS

The ultimate PPU sophistication available to Maritime pilots

Ergonomic
- Easy to carry and small
- No longer cables on board

Precise
- Accurate to the centimeter and to the hundredth of a degree
- Real time feed to any pilot software

Reliable
- Dependable long-range wireless connection to pilots’ tablets
- Unlimited operating time for long and complex berthing

BANANAS is an acronym for Berthing And NAviGation Aid System. This innovative PPU consists of two lightweight beacons, incorporating GNSS RTK receivers aided by internal gyroscopes, and advanced inertial sensors. Pilots can finally obtain accurate Heading, ROT, COG and SOG.

This high precision sensor operates within 100m from the pilot’s tablets, making it a unique PPU champion fit for long and complex berthing maneuvers with its hot-swappable safe batteries.

Thanks to its embedded VHF/UHF radio link, BANANAS is compatible with VTS and long-range AIS, as well as adequate to acquire RTK differential corrections in real time to deliver centimeter accurate positioning.
Types of Vessels Visiting the Thames

- The pie chart (figure 1) represents the proportion of the total number of Commercial Shipping voyages (39,160) over 2016/17 per vessel type. Vessel types with small percentages have not been labelled.

- The expected trend is that the more voyages a particular vessel type has, the more breakdowns that would occur.

- However, the pie chart (figure 2) shows the proportion of breakdowns per vessel type, over the same period.

- Knowing the number of voyages and the number of breakdowns, a breakdown rate - number of breakdowns per 1000 voyages - can be calculated (see below). Consideration has been made where there have been fewer voyages which may skew a breakdown rate - this is mentioned where appropriate.

- Not all vessel types are included, as the number of voyages for certain vessel types are minimal and/or there have been no breakdowns for that vessel type (no rate can be produced).

- There is no single stand-out type of breakdown, however around 13% are failures of navigational equipment and 10% are power system failures. Unfortunately, we were unable to identify the root cause of 23% of the breakdowns, however the PLA will endeavour to investigate further wherever possible.

Breakdown Rate - By Vessel Type

- Ro-Ro vessels and Dredgers have a large number of voyages (10,755 and 5,850 respectively), with very few breakdowns, hence their breakdown rate is much lower. These vessels are designed for frequent manoeuvres, therefore their engine arrangements and controls are more suited.

- Tankers (3,902 voyages) have a lower breakdown rate than Container Ships at around 4 breakdowns for every 1000 voyages.

- Container Ships make up only 16% of vessel movements, they are responsible for 36% of breakdowns and hence the highest breakdown rate, with 5.4 breakdowns per 1000 Voyages (6,327 total voyages).

- The high breakdown rate for Container Ships may be due to the fact they are designed to be efficient over long distances rather than ‘manoeuvring’ and so, breakdowns may occur when reducing engine revs or manoeuvring. Ro-Ro and dredgers are designed for frequent manoeuvres, therefore their engines and controls are more suited.

- Container Ships may not have sufficient time to undertake preventative maintenance and checks.

- There may be a correlation between the age of vessels and the breakdown rate. The Container Ships we get on the Thames tend to be less than 15 years old.

Continued over on page 26.
THE ORC PILOT BOAT

As used by:
- Port Phillip Sea Pilots
- Mid West Ports
- Flinders Ports
- Svitzer
- Rio Tinto
- Esperance Port Authority
- The Port Authority of NSW - Port Kembla
- Port of Townsville
- Gladstone Ports Authority
- Tasmanian Ports Corporation
- Lyttelton Ports Corporation - NZ
- PrimePort - NZ

Mal Hart 66 Yuilles Road
Mornington Victoria 3931 Australia
E: contact@hartmarine.com.au
P: 61 3 5975 5622
F: 61 3 5975 9634

www.hartmarine.com.au
Age of Vessels

- A comparison between the number of voyages and the number of breakdowns by vessel age is shown on the below graph, which produces a breakdown rate for each ‘age range’.

- The most common age range of vessels visiting the Thames is between 6 and 10 years old, followed by 16 to 20 years.

- An expected trend would be for the breakdown rate to increase as the age of the vessels increases.

- However, the highest rate is for newly built vessels (0-5 yrs old at 6 breakdowns per 1000 POLARIS voyages (2,110 total voyages).

- Looking at vessels 0-5 yrs old—the most common vessel type is Container Ships (1144 voyages, with 10 breakdowns) creating a breakdown rate of 8.7 breakdowns per 1000 POLARIS voyages.

- The age range with the next highest breakdown rate is between 30 and 40 years old. The most common vessel type in this age range is General Cargo vessels (970 voyages, with 6 breakdowns) followed by Dredgers (311 voyages, with only 1 breakdown however).

Summary

- New vessels under 5 yrs old are more likely to have a breakdown and have the highest breakdown rate of any other age range.

 The majority of the voyages for vessels less than 5 years old are Container Ships (54%) followed by Tankers at 15%.

- The reason for this high rate may be due to a degree of ‘running in’ time for new vessels and engines. More modern engines also have additional sensors, engine software, etc. which may shut down engines without warning rather than run at reduced efficiency.

Size of Vessels

- The most common vessel to visit the Thames is 50 – 100m LOA, which has a total of 12,762 voyages. This length range is also responsible for the most breakdowns (25), however has a small breakdown rate – 2 breakdowns per 1000 voyages.

- The highest breakdown rate is for vessels 300+ m. There has only been 651 movements but with 5 breakdowns, they have a rate of 7.7 breakdowns per 1000 voyages.

- All vessels over 300m visiting the Thames have been Container Ships.

Breakdowns by Vessel Length

Trends

- Container Ships showed a worsening trend 2016-17, but so far in 2018 shows improvement.

- Tankers showed an improving breakdown trend 2016 -17, however is slightly higher for the start of 2018.

- General Cargo vessels showed a slightly improving trend 2016 - 17, however the first part of 2018 shows a worse breakdown rate.

- Ro/Ro vessels have the lowest breakdown rate, which has been steadily increasing.

<table>
<thead>
<tr>
<th>Vessel</th>
<th>2016</th>
<th>2017</th>
<th>Trend</th>
<th>2018 (to mid Feb)</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>4.38</td>
<td>6.13</td>
<td>↑</td>
<td>2.02</td>
<td>↓</td>
</tr>
<tr>
<td>Tanker</td>
<td>5.41</td>
<td>2.44</td>
<td>↓</td>
<td>3.06</td>
<td>X</td>
</tr>
<tr>
<td>General Cargo</td>
<td>2.02</td>
<td>2.43</td>
<td>X</td>
<td>4.16</td>
<td>↑</td>
</tr>
<tr>
<td>Ro/Ro</td>
<td>0.39</td>
<td>0.72</td>
<td>X</td>
<td>1.48</td>
<td>X</td>
</tr>
<tr>
<td>Total</td>
<td>2.38</td>
<td>2.51</td>
<td>X</td>
<td>2.00</td>
<td>X</td>
</tr>
</tbody>
</table>
Since 1967, we had over 7000 masters and pilots, mainly from USA, Canada, Australia, Brazil and Europe. Many of them now coming for the second time (and more) in their career.

Put your safety at sea in the best hands: Port Revel

- Our highly motivated instructors: former maritime pilots
- Our fleet of eleven 1:25 model ships representing 20 different vessels of 40 000 to 400 000 dwt including cruise ship, Gaz carrier, Ferry, Car carrier, Tankers, Container ship...
- Our 5 tractor tugs with Voith Schneider, Z-peller and Carrousel
- Our 5-hectare lake with wave, wind and current generators, little interference from wind, and a variety of berths, an SPM, a canal, channels and extensive shallow water areas enabling all types of manoeuvres
- Our DGPS ship tracking system for manoeuvre debriefings
Pilots Lost in Service

On the 28th of February, while disembarking from the container vessel “Singapore Express” Captain Miguel Conceição fell in the water.

Miguel was born in 1973 in Cartaxo. He join the nautical school in 1993 and after finishing his studies he sailed in bulk carriers and container vessels where he became a Captain. Captain Conceição started as a pilot in 1996 in The Azores, and moved with his family to Terceira Island for 10 years. In 2016 he joined Lisbon Pilots. Captain Conceição leaves his wife and 8 year-old son.

We are also deeply saddened to report that Captain Louis Adams of the Corpus Christi Pilots was killed on 16 June while attempting to board a ship at the dock.

We understand that the gangway collapsed throwing him into the water between the ship and dock and then fell on top of him. Captain Adams, son of Robert Adams, a Houston Pilot, was 63. He had been a presiding officer of the Aransas-Corpus Christi Pilots.

Port Community to Cooperate for a Stronger Voice in IMO

“The port community is represented in IMO through various organisations, including port authorities, cargo handling companies, harbour masters, maritime pilots, port community systems, ship agents and port police.

Through closer cooperation between our respective organisations we will be able to take on the challenges of trade facilitation, climate change, automation, cybersecurity and others in dialogue with the shipping community and the maritime administrations represented in the IMO.”

This was the key message IAPH President Santiago Garcia Milà gave in his ‘maiden speech’ at the headquarters of the International Maritime Organisation on 11 June, 2018. The IAPH President spoke at the first dedicated port event that was ever held at the IMO, following an initiative of IMO Secretary General Kitack Lim, who also initiated the theme of last year’s World Maritime Day ‘Connecting Ships, Ports and People’.

The IAPH President referred concretely to the ‘single window’ concept that is promoted by the IMO in the context of the Convention on the Facilitation of International Maritime Traffic (FAL). “Shipping companies and ports both support the concept, but all too often we focus on the different needs of the ship and the shore side. Technically speaking, considering the possibilities offered by today’s innovative digital technologies, it should be relatively easy to resolve our differences however.”

Considering the wider agenda of the IMO, Mr Santiago Garcia Milà added: “Digitisation and improved ship-to-shore communication will also come up in other topics that are on the agenda of IMO. If reduced vessel speed is going to become a mainstream short-term measure to reduce GHG emissions of ships, then this will need a thorough debate with the port community. The same applies for the introduction of automated vessels.”

IAPH is undertaking steps to establish a coordinated ‘round table’ of port interests in IMO, inspired by the existing round table of international shipowner organisations.
TWO TUGS FULL CONTROL

By Rotortug.
Another Reason Ships need Pilots: So the Crew can be tourists!

Reproduced with the kind permission of AMPI.
SEAiq Pilot Enterprise Subscription

SEAiq Pilot is the only multi-platform piloting solution, combining a complete set of piloting features with unparalleled ease-of-use and is widely adopted in major ports and pilotage areas around the world.

Our Enterprise Subscription is for organizations that desire premium support, extensive customization, and advanced features for their pilots; giving your questions, comments, and issues top priority.

The Benefits

Simple Billing
Receive one bill quarterly for all your users. Pricing is only US $30/month per pilot.

Multiple Devices / Multiple Platforms
Each pilot can use SEAiq Pilot on all their laptops, tablets, and smart phones. All of these have the same software and data can be easily moved between devices.

Customization
Edit all menus to display only the settings you use. Create your own Quick Settings tab that lists the features that are most often used.

Advanced Chart Overlays
Display chart overlays in a variety of formats, including ESRI Shapefile, Autocad DXF files, and various forms of bathymetric ENCs.

Supports iPad, iPhone, Microsoft Windows, Android, and Apple MacOS

Supports:
Navicom Dynamics, AD Navigation
MarinTek, Genkin, PilotsTech
...and many others

sales@seaiq.com I www.seaiq.com
SAFEHAVEN MARINE
The Pilot Boat Specialists

‘All weather’ Pilot vessels, self righting with S.A.R. capabilities

www.safehavenmarine.com

Builders of the renowned INTERCEPTOR range of Pilot boats

When you demand Strength & Seakeeping

Contact - Safehaven Marine, Ashgrove, Cobh, Co Cork, Ireland
Phone 00353 61 8054582 e mail - info@safehavenmarine.com